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1 Introduction & Related Work

We consider the task of one-shot learning of visual categories, or more generally, learning to classify
images with few examples of particular classes. The currently dominant image classification paradigm
of supervised deep learning performs well only when data is abundant. In this paper we explore a
Bayesian procedure for updating a pretrained convnet to classify a novel image category for which
data is limited. We demonstrate that the approach is competitive with state-of-the-art methods whilst
also being consistent with ‘normal’ methods for training deep networks on large data.

Several approaches to one-shot learning have been noted as failing to beat a simple nearest-neighbour
classifier [8]. Recent approaches of the problem have used relatively complicated architectures such
as memory augmented neural networks [9, 10] or siamese networks [5]; or have been specialised for
the task of one-shot learning [10].

Fei-Fei et al. [2] demonstrated one-shot learning as a Bayesian update to an image classification
model with a prior based on categories learned with lots of data. Our work is an modern update of
this work, applying this technique to deep convolutional networks.

2 Bayesian Updates of a Pretrained Convnet
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Figure 1: A pretrained convnet is used as a fixed
feature extractor and the prior on the classifier
weights is modelled on the existing weights.

We use a convnet, pretrained on a base dataset Dbase
(e.g. ImageNet [1]), as the basis for transferring
knowledge to our new task. We decompose this
convnet into a fixed feature extractor and a softmax
classifier with weight matrix Wbase.

For each new category, we need to specify D + 1
connections between the output neuron and the D-
dimensional embedding plus a bias term. We learn
these weights in a Bayesian fashion, using a prior
based on the weights learned for other categories.

We model Wbase as a multivariate Gaussian, chosen
to capture the correlation structure between the high
level features, and set this as the prior on each new
weightvector: p(wi) = N (µ̄, Σ̄ + λI), where µ̄ and
Σ̄ are the sample mean and the sample covariance
matrix ofWbase and λ acts as a regulariser and ensures
the covariance matrix is full rank.

To infer the posterior weights, we experimented with
an MCMC-based sampling technique, NUTS [3], and
a variational technique, ADVI [7].
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3 Evaluation

We test the performance on a 5-way classification task, after having seen n examples each category
in training. The novel categories come from unseen examples of the same dataset, so as to reduce
the dataset bias introduced. We use the tiny image dataset CIFAR-100 [6] which we split 80:20 (in
alphabetical order) into Dbase and Dnovel which contain examples of images xi and target labels ti
from the category sets Cbase and Cnovel

1. The evaluation procedure is then:

1. sample 5 labels from Cnovel
2. sample n examples of each label to create small training data set S = {(xi, ti)|i = 1, ..., 5n}
3. find posterior weights of each object category in light of n observations
4. evaluate 5-way classification performance on all the remaining examples in Dnovel
5. repeat 20 times to establish performance bounds

3.1 Inference methods and sensitivity to the strength of prior

Using the faster but more approximate ADVI technique resulted in a ≈ 4× speed up but a 2-
percentage-point performance decrease compared to MCMC. A full-rank version of ADVI which
does not approximate the posterior with diagonal Gaussians may be preferable for future work.

Overly broad priors (λ ≥ 100) performed only marginally better than ‘dumb priors’, and overly
precise priors (λ ≤ 10−4) degraded performance particularly after 20 training examples when the
data has strong opinions about the weights. The results were otherwise fairly insensitive to λ within
this range, but the effect may be obscured by the large variance and so we’re working on removing
this free parameter.

3.2 Performance comparison

We compare our performance against alternative approaches for n-shot learning (see Figure 2a):

• ‘Informed Prior’: our method of placing a multivariate Gaussian prior on the network
weights of a softmax classifier.
• ‘Dumb prior’: as above but fitting a spherical zero-centred Gaussian prior.
• ‘Baseline softmax’: a standard softmax classifier initialised with Gaussian noise and opti-

mised through gradient descent, with L2 regularisation of 0.001.
• ‘Cosine’: Nearest neighbour classifier on the extracted image features by cosine distance.
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(a) Our informed prior gives significant improvement
over just being Bayesian. Cosine distance is infor-
mationally inefficient with more data. (1 s.d. error
bars)
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(b) Indirect comparison against state-of-the-art one-
shot learning technique of Matching Networks [10] us-
ing a nearest-neighbour classifier as a reference point
for similar datasets.

Figure 2: 5-way classification results

1As there are no pretrained networks on ‘CIFAR-80’, we adapted and trained the ‘quick-cifar10’ model
distributed with Caffe [4]. The model achieved 30.4% top-1 test accuracy.
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A chance classifier would achieve 20% accuracy. A nearest neighbour classifier using cosine distance
of the extracted features φ(x) achieves 34% after one shot. In contrast, training a softmax classifier
by gradient descent, with regularisation, only manages 30%. Our one-shot learning method, achieves
almost 40% accuracy on this challenging task.

3.3 Indirect comparison to the state-of-the-art

We can indirectly compare our method to the Matching Networks method proposed by Vinyals et al.
[10]. Although the datasets differ in source2, the training/test procedure is comparable. After one
shot, a nearest-neighbour classifier with cosine distance metric achieves 36.6% on their miniImageNet
dataset and 34.1% on our CIFAR-100 dataset. The performance increase over this reference is shown
in Figure 2b. Our ‘informed prior’ appears to be competitive with this state-of-the-art specialised
model. However, part of their method is to allow the network to change the embedding of a test
example as a function of the training examples with fully conditional embeddings (FCE). This
improves their performance on the miniImageNet dataset shown, but it is noted that FCE does not
seem “to help much” when tested on other datasets. We are working towards making this comparison
exact.

4 Conclusions

One-shot learning continues to be a challenging problem for machine learning models. Non-
parametric methods (combined with deep non-linear embeddings) often perform best in this low
data regime. However, these methods become relatively weak if more data becomes available. Our
approach, which is presented as a Bayesian learning procedure on a pretrained convnet, seemingly
combines the best of both worlds. After a single data example, our ‘informed’ prior enables the
classifier to perform similarly well to models highly specialised for this task. Yet, when more data
is observed, the distribution over the weights collapses to a point mass and our model reduces to
precisely the same model as a conventionally-trained deep convolutional network.
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