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Abstract

This paper makes two contributions to Bayesian machine learning algorithms.
Firstly, we propose stochastic natural gradient expectation propagation (SNEP),
a novel black box variational algorithm that is an alternative to expectation prop-
agation (EP). In contrast to EP which has no guarantee of convergence, SNEP
can be shown to be convergent, even when using Monte Carlo moment estimates.
Secondly, we propose a novel architecture for distributed Bayesian learning which
we call the posterior server, implementing a distributed asynchronous version of
SNEP, which allows scalable and robust Bayesian learning in cases where a dataset
is stored in a distributed manner across a cluster. An independent Monte Carlo
sampler is run on each compute node which targets an approximation to the global
posterior distribution given all data across the whole cluster. We demonstrate SNEP
and the posterior server on distributed Bayesian learning of neural networks.

1 Introduction

Deep neural networks have recently led to advances in fields such as computer vision [KSH12]
and reinforcement learning [MKS+15, SHM+16]. While deep neural networks perform well in
many tasks, they tend to be overconfident in their predictions and do not provide well calibrated
uncertainty estimates. Bayesian deep learning tackles this problem in a principled way. There are
two different approaches to Bayesian deep learning, variational inference methods, which seek to
approximate the posterior with a tractable distribution [HLA15, BCKW15, GG16] and sampling
methods which obtain approximate samples from the posterior distribution [LCCC16, KRMW15].
Another challenging problem in large-scale machine learning is how to parallelize learning. This is a
well-studied problem in deep learning [DCM+12, ZCL15] but there has been little work on this in
the Bayesian context. In this paper we present stochastic natural gradient expectation propagation
(SNEP), a novel black-box variational inference algorithm related to expectation propagation (EP,
[Min01]), which lends itself well to parallelization. Due to space constraints, we will describe the
high level idea and present experimental results. For more details, we refer to [HWL+16].

In SNEP the data set is partitioned into N disjoint parts belonging to N worker processes. On each
worker we run an MCMC sampler targeting an approximation to the posterior distribution where
the likelihood from data on other workers has been replaced with an exponential family distribution
(co-incidentally the EP tilted distributions). We will also maintain a likelihood approximation on each
worker which is sent infrequently across the network to update the target distribution of other workers.
Instead of using parallel EP updates, an approach proposed by [XLT+14], which does not perform
well for complex models, we augment the Power EP [Min04] objective with auxiliary variables (as
in [HZ02]) to derive a (convergent) double-loop algorithm. The inner loop update is a stochastic
natural gradient ([Ama98, RM15]) update for the parameters of local likelihood approximation using
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Figure 1: Comparing (p-)SNEP to non-Bayesian distributed learning algorithms with: (a) a shallow
dense architecture on MNIST; (b) a deep dense architecture with twenty hidden layers on MNIST; (c)
LeNeT-5 on CIFAR-10. In (b), the dashed lines for A-SGD and EASGD indicate that a prelearning
phase was performed, whilst for p-SNEP no prelearning was found necessary.

an MCMC sampler targeting the EP tilted distribution. By updating the likelihood approximations
between workers we obtain an asynchronous distributed Bayesian algorithm in which each worker
runs an MCMC sampler targeting a local approximation to the global posterior. While double loop
algorithms can be slow we found in experiments that a small number of inner loop iterations per outer
loop iteration was sufficient for convergence.

2 Experiments

In this section we report experimental results applying SNEP to distributed Bayesian learning of
neural networks. The underlying models are neural networks with Gaussian priors on the weights
and and we are trying to learn the posterior distribution over the weights. We compare our algorithm
to Adam [KB15], a state-of-the-art stochastic gradient descent (SGD) algorithm with access to the
whole dataset on a single computer, as well as several state-of-the-art distributed SGD algorithms:
asynchronous SGD (A-SGD) [DCM+12] and elastic averaging SGD (EASGD) [ZCL15]. In our
experiments we used stochastic gradient Langevin dynamics [WT11] with an preconditioning scheme
reminiscent of Adam as the MCMC sampler [LCCC16].

In a first set of experiments we applied our algorithm to the MNIST data set of handwritten digits
using a deep neural network with two hidden layers of 500 and 300 hidden units (see learning curves
in figure 1(a)). There are two versions of our algorithm, SNEP and pSNEP, corresponding to slightly
different objectives. We tuned all algorithms for optimal performance. As can be seen in the figure,
pSNEP is competitive with EASGD in this experiment. Both algorithms outperform A-SGD. Figure
1(b) shows the same comparison on CIFAR10 with a small CNN. Here SNEP performs better than
pSNEP and converges faster than all other algorithms.

In another set of experiments, we compared p-SNEP to a deep feedforward network with twenty
hidden layers of dimension fifty (see Figure 1(c)). [NVL+15] recently used this architecture to
demonstrate the advantages of adding noise to standard SGD. We found that while adding noise to
SGD, A-SGD, and EASGD did help some runs escape suboptimal solutions, it did not allow any
of these methods to obtain a solution like that found by p-SNEP with extra percent of accuracy.
Thus, this suggests that the benefits to learning with SNEP cannot entirely be put down to the
addition of noise. Further experiments in [HWL+16] show that SNEP is robust to the length of the
communication intervals.

3 Conclusion

We introduced SNEP, an asynchronous distributed algorithm for Bayesian learning in complex models
and presented experiments showing its performance in Bayesian neural networks. It is competitive
with other distributed algorithms but further research is needed to fully understand its properties and
explore its performance on larger models. SNEP could also be extended in various ways.
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