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1 Introduction

Discriminative deep neural networks (NNs) that are trained in a supervised manner constitute a
very successful approach to accurate, categorical classification of high-dimensional data. A major
downside however is their limited perceptual horizon, given by the number of classes. Instances of
unkown classes are erroneously, but often confidently associated with a known class. The actively
studied integration of Bayesian modelling and neural networks [1–11] enables a new perspective:
predictions can be associated with uncertainties, where the latter ideally would be high in face of data
from classes not trained to recognize.

A particularly useful theoretical connection between dropout networks [12, 13] and approximate
but efficient Bayesian inference was identified by Gal and Ghahramani [9, 14, 10]. Using this
approach, informative and interpretable uncertainty measures were recently derived from deep
Bayesian convolutional networks trained for disease detection from high-dimensional medical images
[15]. Analysing the causes of uncertainty, it was found for several settings [15] that it is in particular
the difficult predictions that carry a high uncertainty. Images far from the training data could only be
detected if they resided in the vicinity of the decision boundary, rendering the detection of abnormal
images [16] such as rubbish class examples [17] infeasible.

The aim of this work is to show that an almost trivial modification of the standard uncertainty readout
(Fig. 1b & 2a) is useful for the detection of data from unknown categories without any label for the
latter. Our inspiration comes from the fact that classification networks can be formulated such that
they differ from regression networks merely by an additional nonlinearity (a sigmoid or softmax).
Bayesian regression networks in turn can exhibit high uncertainty for predictions far from the training
data [9, 18]. In the following we provide evidence that the uncertainty about the softmax input is
high in regions of the data space that has not been sampled during training.

2 Results

For visualization purposes, we first trained a small Bayesian NN (3 hidden layers with 100 units
each) with dropout layers interleaved (pdrop = 0.5) on a 2D toy classification problem (Fig. 1a). We
approximated the predictive posterior distribution over the softmax output (or correspondingly the
input) by collecting T = 100 Monte Carlo samples with dropout turned on at test time. We quantified
uncertainties by the predictive standard deviation σpred of the approximate predictive posterior over
the softmax output (Fig. 1b) and input (Fig. 1c) respectively. Uncertainty about the softmax output is
high in the vicinity of the decision boundary, whereas uncertainty about the softmax input is high in
regions that are both far from the training data and not captured by the softmax output uncertainty.
One might wonder why a large uncertainty about the softmax input (Fig. 1c) does not necessarily
result in an overall softmax prediction around 0.5 or at least in a high uncertainty about the softmax
output. This is because the approximate predictive posterior over the softmax input may assume
values that all reside in the saturating regime of the softmax nonlinearity. We have indeed observed



this (data not shown) in particular for data points with large enough distances from the separating
hyperplane. We conclude that far from the training data and the separating hyperplane the prediction
uncertainty is low (i.e. the class membership probability as indicated by the softmax output is overly
confident), while the model uncertainty (as captured by the softmax input spread) is high.

Figure 1: Illustration of uncertainty for a 2D binary classification problem. (a) Conventional
softmax output obtained by turning off dropout at test time. (b) Uncertainty about the softmax output
tends to be high for regions in input space that reside in the vicinity of the (extrapolated) decision
boundary. (c) Uncertainty about the softmax input tends to increase with distance from the training
data. Color-coded dots in all subplots correspond to test data the network has not seen during training.

Next we applied the same procedure to a high-dimensional image (512x512 pixels) scenario. For
this purpose we took a Bayesian convolutional network (14 weight layers, with 0.2 dropout applied
to conv. layers) that had been trained previously for binary disease detection from fundus images
[15]. Figure 2 (a) shows the distribution of uncertainty values for 53576 healthy and diseased fundus
[19] images (blue) of the softmax output. The space of images with content unknown to the disease
detection network was sampled by performing predictions with associated uncertainties (green in Fig.
2) on the 2012 ImageNet [20] validation set (49101 colour images from 1000 different categories).
Whereas the uncertainty about the softmax output is not predictive about the presence of an unknown
concept (similar distributions in fig. 2a), uncertainty about the softmax input is shifted towards higher
values for confounding (ImageNet) vs. known (Kaggle DR) images (Fig. 2b).
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Figure 2: Anomaly detection using the uncertainty of a discriminative Bayesian convolutional
NN. The network has a limited world view of two categories (healthy and diseased) because it had
been trained for diabetic retinopathy detection from Kaggle DR[19] fundus images. (a) Distribution
of uncertainties about the softmax output for Kaggle DR[19] test data (53576 fundus images) and
Imagenet 2012 validation data [20] (49101 images showing objects from 1000 different categories).
(b) The same as (a) but for uncertainties about the softmax input.

Conclusion

Extending on previous evidence [15] that the width of the approximate predictive posterior over the
softmax output is sensitive to difficult decisions, we have provided evidence that uncertainty about
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the softmax input can be useful for detecting images with unknown semantic content. Taken both
aspects together, deep discriminative Bayesian neural networks - even though trained on a limited
world view - know a lot about what they do not know.
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