Variational Inference in Neural Networks using an
Approximate Closed-Form Objective

Wolfgang Roth and Franz Pernkopf
Signal Processing and Speech Communication Laboratory
Graz University of Technology
roth@tugraz.at, pernkopf@tugraz.at

Abstract

We propose a closed-form approximation of the intractable KL divergence objec-
tive for variational inference in neural networks. The approximation is based on a
probabilistic forward pass where we successively propagate probabilities through
the network. Unlike existing variational inferences schemes that typically rely on
stochastic gradients that often suffer from high variance our method has a closed-
form gradient. Furthermore, the probabilistic forward pass inherently computes
expected predictions together with uncertainty estimates at the outputs. In experi-
ments, we show that our model improves the performance of plain feed-forward
neural networks. Moreover, we show that our closed-form approximation works
well compared to model averaging and that our model is capable of producing
reasonable uncertainties in regions where no data is observed.

1 Introduction

In recent years, a lot of work has been dedicated to a Bayesian treatment of different kinds of neural
network (NN) architectures [4} 1,7, 12} 2 I5]. The goal of Bayesian inference is to infer a posterior
distribution over the NN parameters and compute predictions as expectations with respect to that
posterior, rather than computing predictions based on a single point estimate. An analytical treatment
of this approach is usually not tractable for NNs. Therefore, various approximations have been
used. Especially the variational inference framework has shown promising results since it renders the
inference task as an optimization problem for which a vast amount of literature is available [11]. Here,
the goal is to find an approximate variational distribution ¢(W) that is as close as possible to the
true posterior p(W|D)!'| Typically the Kullback-Leibler divergence KL(q(W)||p(W|D)) between
approximate and true posterior is used as optimization criterion. Subsequently the expectation is
computed with respect to the variational distribution ¢(W).

However, applying variational inference to NN is not straightforward since the variational objective
and its gradient is typically not available in closed-form. A common way to overcome this issue
is the so called reparameterization trick where the gradient of the expectation is replaced with the
expectation of a gradient [[7 [1]]. This way, approximate gradients can be sampled from a simple
distribution and used for stochastic gradient methods to optimize expectations for which no analytic
solutions exist. Our work is closely related to [1] but follows a different spirit: We approximate
the intractable expectation directly to obtain a closed-form approximation of the objective and the
gradient thereof. Similar as in [12} 4], we make several approximations and propagate probabilities
through the network. At the end of this probabilistic forward pass, we arrive at an approximation to
the log-likelihood defined by the NN that can be computed in closed-form.

D denotes the given dataset.

Workshop on Bayesian Deep Learning, NIPS 2016, Barcelona, Spain.

Our method has several advantages compared to the reparameterization trick: (i) Our method removes
the source of stochasticity introduced by sampling the gradient. When using the reparameterization
trick in stochastic optimization, it might be necessary to average several gradients in order to reduce
the variance to a decent level. The resulting computational overhead is avoided by our method.
Nevertheless, our method is compatible with stochastic minibatch optimization. (ii) Our approximate
function can be used with more sophisticated optimization algorithms such as quasi-Newton methods
that are still not suitable for stochastic gradients. This is especially interesting in the case of small
datasets where it is not expensive to compute a gradient using all data samples. Furthermore, since
our approximation results in a closed-form objective and a closed-form gradient, it is easier to decide
if a local minimum has been reached by using standard optimality conditions. (iii) After training it
is common to make predictions based on the mean weights of ¢(W) or to average predictions of
samples drawn from ¢(W). Our approximated forward pass can also be used to compute expected
predictions with respect to the variational distribution ¢(W'). This results in less computational
overhead at test time while still taking the model uncertainty into account.

2 Neural Networks and Variational Inference

The structure of a fully connected feed-forward NN with L layers is determined by the amount of
neurons {do, d1, . ..,dr}, where dy is the dimensionality of the inputs, dy, is the dimensionality of
the output-|and d; for 1 <[< L denotes the number of neurons in layer /. The parameters of the NN
are then given by a set of weight matrices W = {WZ}ZL:1 where W! = (wé,j)izl,---,dz7j:1,---,d171
An NN defines a function y = f(x) by iteratively applying a linear transformation a' = w1
followed by a non-linear activation function ' = ¢,;(a'). If I < L, we use the ReLU function
¢;(a) = max(0,a) [IO]E] If | = L, we use the identity in case of regression and the softmax
activation function in case of classification. The output of the NN is then y = . For convenience,
we define W=F = (WL, .

To adopt a Bayesian treatment of NNs we assume a prior distribution p(W) over the weights. It is
common to assume that the weights are a-priori independent, i.e. p(W) factorizes into a product of
factors for each individual weight. Typical choices for the prior distribution are zero-mean Gaussian
or Laplace distributions but also scale-mixture priors have shown to be beneficial [1]. Moreover, the
output of an NN can be interpreted as a likelihood function p(D|W'). The prior together with the
likelihood induce a posterior distribution p(W|D) over the weights.

However, p(W|D) is typically intractable. The aim of variational inference is therefore to approx-
imate p(W|D) with a simpler variational distribution ¢(W|v) and then perform inference based
on ¢(Wv). Here v denotes the set of variational parameters that are optimized so that ¢(W'|v) is
as close as possible to the posterior p(W|D) in some sense. In variational inference it is common
to minimize KL(g(W |v)||[p(W|D)). We adopt the common mean-field approximation with an
approximate posterior ¢(W |v) that factorizes into a product of factors g(w|v,,) for each weight
w € W. We select the variational distribution g(w/|v,,) to be Gaussians with mean and variance
parameters v, = (fuw, 04). This doubles the total amount of parameters to optimize while adding
useful uncertainty estimates to the weights.

3 Approximating the Variational Objective

Using basic transformations, minimizing KL(¢(W)|p(W|D)) is equivalent to minimizing
KL[g(W)||p(W)] — Eqw[log p(D|W)]?| The latter expression is much more convenient since
it does not involve the intractable true posterior p(W|D). While the KL term allows for analytic
solutions for common choices of prior and approximate posterior combinations, the expected likeli-
hood is usually intractable for networks of any decent size. Therefore, we approximate the likelihood
term by successively propagating Gaussian distributions through the network. Before explaining
each approximation in detail, we start with a high-level description of the approximation. Then,

*We assume one-hot encoded vectors ¢ in case of classification.

3For simplicity we included the bias weights in the weight matrices.

“The max function is applied element-wise.

>In the sequel we omit the dependence of the variational distribution on v and simply write g(W).

we provide the variational objective including detailed analytical expressions for the KL term with
Gaussian or Laplace priors p(W') and Gaussian approximate posteriors g(W).

3.1 Approximating the Expected Log-Likelihood

In particular, the expected log-likelihood is approximated by
Eqw) [logp(t|a®, W)] = /(J(W) log p(t|x’, W)dW (1)
— [aw)loga(tla’ @' W), W)aw @
~ /q(W>1)N (a'pgr,001) log p(tla', W) datdWw ! 3)

~ /q(W>1)N (z'|pgr, 0,1) logp(tjz', W=)dz dW ™! (4

~ [@i 7) logp(tla") da)
1
~ logp(tlpar) + 5 Zl 0ar (V2 logp(t|ph,e)),, - 6)

Similar as in [[12} 4], we successively apply a central limit argument and propagate probabilities
through the network to obtain a tractable approximation. In (2), we emphasize that activations
are given as a sum of random variables. Given a sufficiently large amount of input neurons, the
distribution of neuron activations can therefore be well approximated using Gaussians as in (3).
For computational convenience, we assume that the activations of each neuron are independent.
Furthermore, in (@) we approximate the distributions after applying the activation functions again
with Gaussians by moment matching. These two approximations are iterated up to layer L. A tractable
approximation of the expectation of the log-likelihood at the outputs is achieved in (6) by using a
second-order Taylor approximation of the log-likelihood with a diagonal Hessian approximation
around the mean g, . The gradient of this function is rather cumbersome to calculate but is readily
obtained using automatic differentiation frameworks.

3.1.1 Approximating the Activations

Assuming that the inputs 2'~! in layer [are independent and using the mean-field assumption of
the variational distribution, the activations a' can be well approximated by a diagonal Gaussian
N (a!|pt,i,0 4). Due to the independence assumption, the means and the variances of the activations
are computed as

di_1 di—1
Mgl = E Z ’ng :L’é-_l = Z Hapl ﬂxl_—l (7)
' =1 = 7
di 2 2
u =D E[(w)’] E[(25)"] - E [wy;] E [257'] ®
j=1
di—1
= > u, ety iy, (e = 12) ©)
j=1

where (@12 denotes the raw second moment E[(m§71)2]. In case of [= 1, we assume no variance
at the inputs and thus the second term of (9) cancels.

3.1.2 Approximating the ReLU by Moment Matching

In the next step, the Gaussian approximation of the activations is propagated through the activation
function. We limited ourselves to the ReLU activation function although analytical solutions for other

functions such as step functions can be calculated as well. In our case, the resulting distribution is a
mixture of a point mass at zero and a truncated Gaussian that we again approximate by a Gaussian.
It suffices to compute the quantities Exr(, , o ,)[max(0, a})] and Ex, , o ,)[max(0, (af)?)]. The

approximation is computed as

2

Hal Hal [Oal Hat
E 1 — _ i 1 f i i _ i 10
[.%‘J Hgl 2 ter 2% T 2T oXp (20, > (19

i

o+ 12 Jo o 12,
=5 %y & + pgy) —exp | ——=). D)
2 i s o,

QO—aé a;

E [(29)%] = paty2

Rather than computing the variance of the Gaussian approximation, we compute the raw second
moment E[(z!)2] which can readily be used in the expressions derived in Section Figure
illustrates the Gaussian approximation of the ReL.U for several values of y, and o.

' B o/
0 - T : -

S .-
-1 -0.5 0 05 1 -1 -05 0 05 1 15 2 25 3 -2
X X

(a) Ma = *2-5, Oq = 1 (b) Ha = 0, Oaq = 0.5 (C) Ha = 25, Oq = 2

Figure 1: Examples of Gaussian distributions propagated through the ReL.U activation function. The
blue line shows the true distribution as a mixture of a point mass at zero and a truncated Gaussian.
The red dashed line shows the Gaussian approximation of the blue line obtained by moment matching.

3.1.3 Approximating the NN output

For regression it is common to assume that the targets ¢ are Gaussian distributed with mean a* and
some fixed variance 3. In this case the integral in (3)) can be solved analytically, i.e.

log 273 1 9 OgL
B = - T

EN(H@LJGL) [10gN(t|CLL,ﬂ)] =

12)

For simplicity we have assumed that there is only a single output neuron but the extension to multiple
outputs is straightforward. In case of classification, where the NN output is determined by the softmax
function, the integral in (3) does not admit an analytical solution. Therefore, we approximate the
log-softmax function in (3 by its second-order Taylor expansion around the mean p,r. Using a
diagonal Hessian approximation for the Taylor expansion, (6) is given by

1
Ex(u,1.0,.) [l08 smax;(a”)] = log smax;(p,r) — 3 Z Tl smaxy (p,r) (1 — smaxy (p,e)),
t/
(13)

where we used the notation smax;(a) = exp(as)/ Y., exp(ay).

3.2 The KL term

The KL term admits analytical solutions for common choices of prior and approximate posterior
combinations. In particular, we select a Gaussian approximate posterior distribution ¢(W') and
zero-mean Gaussian or Laplace prior distributions p(W'). The KL term can be separated into
Eqw)[log g(W)] — Eqew)[logp(W)]. The first term is the negative differential entropy of a

Gaussian given by

log(27oy,,) + 1

Eqw)llogg(W)] =~ 3 5

weW

(14)

The expected log prior E,(w)[log p(W)] for a zero-mean Gaussian prior p(W') with variance v is
given by

log 27y Z ow + 12

(15)
weW

Here |W| denotes the number of weights in the NN. Using a zero-mean Laplace prior p(W') with
variance y we obtain

Euqw log o(W)] = ~[Wlog (27) = = 3 (ﬁ exp (;f;jy) +uwerf< j%))

weW
(16)

3.3 Likelihood Weighting

In contrast to plain MAP estimation, in our framework the variance ~y of the prior p(W') cannot be
directly used to trade off between a data term log p(D|W') and a complexity term log p(W'). For
instance, in MAP estimation increasing «y corresponds to increasing the influence of the data term. In
our model we would also enforce an increase in variance o, that could be prohibitive for achieving
good performance. Furthermore, we observed in experiments that the KL term for large networks and
small datasets is often orders of magnitudes larger than the expected log-likelihood term. As a result,
the optimization procedure mainly focuses on keeping the approximate posterior (W) close to the
prior (W) whereas the influence of the data is too small. Hence, we propose to add an additional
multiplicative weight A to the expected log-likelihood term that can be interpreted as creating A
copies of the original dataset D. It appears, that this issue is circumvented in [1] with their proposed
KL-reweighting scheme. Due to the exponential weight decay only a few minibatches are influenced
by the KL term whereas the vast majority is solely influenced by the expected log-likelihood.

4 Experiments

4.1 Classification Performance

We evaluated the performance of our model on the MNIST handwritten digit recognition dataset [9]
and variants thereof [8]. Each dataset contains 28 x 28 pixel images showing one of the ten digits.
MNIST consists of 60000 training samples and 10000 test samples where we split the training set
into 50000 training samples and 10000 validation samples used for hyperparameter optimization. The
MNIST variants consist of 10000 training samples, 2000 validation samples and 50000 test samples.

We compare the performance of several NN classifiers. We tested plain feed-forward NNs with £2
regularization (NN). We evaluated the regularization parameter A\ € {274, ... 28} Furthermore,
we tested Bayes by Backprop (NN BBB) using the setup described in [[1]]. For our model (NN VI) we
used Gaussian and Laplace priors p(W'). We evaluated the prior variance v € {1072,...,10%} and
the likelihood factor A € {10°,...,10%}.

For all models we used ReLU activations and two fully connected hidden layers each having
either 400, 800 or 1200 neurons. The weights and weight means are initialized with a zero-mean
uniform distribution having variance 2/d;,, where d;,, is the number of input neurons as suggested
in [3]]. Similar as in [1]], we reparameterized the variance o,, with unconstrained parameters p,, as
ow(pw) = log(1 + exp(py)). For NN VI the variance parameters p were initialized to —10 and
for NN BBB they were initialized to —5E] For NN and NN VI optimization was performed using
ADAM [6] with a step size of « = 1073, For NN BBB optimization was performed using rmsprop
and the KL-reweighting scheme described in [[1]. For NN VI we computed the test error using the
approximated expected predictions and for NN BBB we used the mean weights of ¢(W).

®For NN BBB o 18 actually the standard deviation and not the variance.

The best results of each model are summarized in Table[I] Our model outperforms plain NNs on all
datasets whereas NN BBB is only outperformed on two datasets. NN VI achieved similar performances
for both Gaussian and Laplace priors p(W). As stated in [[I]] the performance of NN BBB heavily
profits from the use of a scale mixture prior, i.e. a mixture of two zero-mean Gaussians with different
variances. However, the scale mixture prior does not result in a closed-form solution of the KL term.
This is unproblematic in their setup since they are sampling the gradients anyway.

Table 1: Classification errors (%) on MNIST [9] and MNIST variants [8].

DATASET NN NNBBB NNVI
MNIST 1.55 1.30 1.52
MNIST-BASIC 3.50 3.39 3.37
MNIST-BACK 20.79 21.49 20.77
MNIST-BACK-RAND 16.08 11.03 14.80
MNIST-ROT 10.93 9.46 10.39

MNIST-ROT-BACK 51.51 48.28 51.04

4.2 Uncertainty Estimates and Model Averaging

In the next experiment we evaluated the output uncertainty produced by our model. Therefore, we
generated 20 points from sin(27z) with some added Gaussian noise. Training was performed with
the L-BFGS quasi-Newton algorithm. The experiment is illustrated in Figure[2a] Our model produces
reasonable uncertainties in regions where many points are observed whereas the estimated uncertainty
grows in regions where no data is available. Note that uncertainties are produced in a single forward
pass rather than by evaluating the outputs of several NNs sampled from ¢(W).

We also evaluated the quality of the approximated expected predictions. This is illustrated in Figure
We averaged the outputs for different numbers of NNs sampled from ¢(W') and compared the
classification error with that obtained by the approximated expected predictions. Model averaging for
each amount of samples was performed 25 times and we report the mean (blue line) and standard
deviation (shaded region) of these experiments. Averaging only a few samples results in a poor
performance. As more samples are averaged, the performance gets closer to the performance obtained
by our approximated expectated predictions (red line). This indicates that our expected prediction
method approximates the true expectation well.

— Approximated expected predictions
— Model averaging

CE Test [%]
IS «

=0.5 0.0 0.5 1.0 15 20 40 60 80 100
X #averaged samples

(a) sinus dataset (b) mnist

Figure 2: (a) Simple dataset (red points) generated from sin(27x) + €. The blue line shows the mean
output of the network and the gray region shows the standard deviation estimated by our model at
the output. (b) Classification errors (CE) of expected predictions with respect to ¢(W') based on our
closed-form approximation (red line) and based on model averaging using different numbers of NN
samples (blue line). The gray region shows the standard deviation of model averaging.

5 Conclusion

We presented a method to approximate the intractable KL objective of variational inference by a
closed-form expression. The approximation is computed by iteratively propagating probabilities
through the network to approximate the intractable expected log-likelihood. Unlike recently proposed
methods that rely on the reparameterization trick to obtain gradient samples, the gradient of our
closed form expression is readily available. Therefore, optimizing our objective does not suffer
from high variance gradients. Furthermore, our objective can also be used in more sophisticated
optimization algorithms such as quasi-Newton methods that are still not suited for stochastic gradients.
The approximation scheme can also be used to compute expected predictions and to produce output
uncertainties.

Acknowledgments

This work was supported by the Austrian Science Fund (FWF) under the project number P27803-N15.
Furthermore, we acknowledge NVIDIA for providing GPU computing resources.

References

[1] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural
networks. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
pages 1613-1622, 2015.

[2] A. Graves. Practical variational inference for neural networks. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 2348-2356, 2011.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In International Conference on Computer Vision
(ICCV), pages 1026-1034, 2015.

[4] J. M. Hernandez-Lobato and R. Adams. Probabilistic backpropagation for scalable learning of
bayesian neural networks. In Proceedings of The 32nd International Conference on Machine
Learning, pages 1861-1869, 2015.

[5] G. E. Hinton and D. van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the Sixth Annual ACM Conference on
Computational Learning Theory (COLT), pages 5—13, 1993.

[6] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the
3rd International Conference on Learning Representations (ICLR), 2015. arXiv: 1412.6980.

[7] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Proceedings of the 2nd
International Conference on Learning Representations (ICLR), 2014. arXiv: 1312.6114.

[8] H. Larochelle, D. Erhan, A. C. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation
of deep architectures on problems with many factors of variation. In Proceedings of the 24th
International Conference on Machine Learning (ICML), pages 473-480, 2007.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[10] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning, pages 807-814, 2010.

[11] J. Nocedal and S. Wright. Numerical Optimization. Springer New York, 2 edition, 2006.

[12] D. Soudry, I. Hubara, and R. Meir. Expectation backpropagation: Parameter-free training
of multilayer neural networks with continuous or discrete weights. In Advances in Neural
Information Processing Systems 27, pages 963-971, 2014.

	Introduction
	Neural Networks and Variational Inference
	Approximating the Variational Objective
	Approximating the Expected Log-Likelihood
	Approximating the Activations
	Approximating the ReLU by Moment Matching
	Approximating the NN output

	The KL term
	Likelihood Weighting

	Experiments
	Classification Performance
	Uncertainty Estimates and Model Averaging

	Conclusion

