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Abstract

In the application of machine learning to time series, coarse labelling of the
sequence is generally known. However, often a finer granularity of the annotations
is sought for improved accuracy and resolution in signal analysis. With a focus on
medical time series, this study employs a bidirectional LSTM autoencoder, t-SNE,
and variational Bayesian estimation in order to provide labels with finer granularity.
Whether the proposed relabelling improves classification remains inconclusive due
to insufficient data, but the semi-supervised approach has the potential for further
refinement and widespread adoption.

1 Introduction

To enable artificial intelligent systems to equal or surpass the ability of the human brain, effective
techniques to learn representations from unlabelled data are imperative (Murphy, 2012). Real life
time series often lack high resolution in their annotations, and consequently, assumptions have to
be made about lower-level temporal aspects. Moreover, high definition labelling of big data is too
expensive and the amount of unlabelled data is still orders of magnitude larger than the amount of
labelled data. Annotations can also be ambiguous or incorrect, and few real-world datasets have
labels that are 100% accurate (Russakovsky et al., 2014).

Medical time series belong to a class of data that is prone to low granularity in the annotations
(Längkvist et al., 2014), and these annotations are often incorrect due to human error. If labelled,
these signals have a known final outcome, but the states and transitions of segments within the signals
are unknown. For example, a patient with a healthy outcome that survived a cardiac arrest during
their 24h stay in an intensive care unit would have had several periods in his/her signal indicative of
deterioration and death. Previous studies on medical time series revert to low resolution data (Lipton
et al., 2015; Choi et al., 2015) or accept the decrease in performance caused by incorrect annotations
(Oresko et al., 2010; Lugovaya, 2005). This research proposes a semi-supervised approach that is
able to group similar segments and, combined with the final outcomes, provide finer granularity in
the annotations of medical signals.

Autoencoders are Neural Network models that are trained to learn representations of the input data
in the hidden layers of the network and reconstruct the input data from the hidden layers. This
provides a variant of feature selection similar to that of Principal Component Analysis (PCA) (Hinton
and Salakhutdinov, 2006). Long Short-Term Memory (LSTM) Recurrent Neural Networks allow
serendipitous discovery of important long and short term features in time series (Lipton et al., 2015).
Thus an LSTM autoencoder is used here to improve the precision of the time series feature analysis.
Additionally, the entire dataset is subjected to the relabelling process, and online analysis with the
technique developed is not necessary. This enables the use of a bidirectional LSTM, which increases
the accuracy of the standard LSTM by adding a backwards LSTM layer to the model.
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After training the autoencoder, the data is encoded into the latent representation. The dimensionality
of the latent representation is then reduced to 2 dimensions and visualised using the t-Distributed
Stochastic Neighbour Embedding (t-SNE) method (van der Maaten and Hinton, 2008). The dimen-
sionality reduction and simultaneous grouping of similar samples of t-SNE enables Gaussian Mixture
Model (GMM) clustering of the samples in the new 2D manifold. The GMM clustering is used to
relabel samples that are grouped based on the final outcome labels. The newly labelled dataset is then
subjected to an LSTM classifier to compare classification performance with the original dataset. The
efficacy of this approach was analysed using 2 different datasets. The implementation software used
for this study was Python 2.7, Theano (Theano Development Team, 2016), and Tensorflow (Abadi
et al., 2015).

2 Related work

In this section relevant previous research aiming to leverage unsupervised learning is reviewed.

In medicine, Miotto et al. (2016) made use of unsupervised learning to capture hierarchical regularities
and dependencies in the electronic health records (EHRs) for 704,857 patients. To this end, a
denoising-autoencoder was implemented. A denoising-autoencoder is trained to explicitly extract
relevant information from the input data by reconstructing the original input data from input data
with added noise. This implementation added noise to the input data by setting a randomly selected
5% of the data to zero. Experimentation was done with up to 7 hidden layers in the autoencoder, and
the best area under the receiver operating characteristic of 0.77 was achieved with 3 hidden layers.
The autoencoder outperformed the raw data baseline and PCA in this task. This study shows the
merit in using autoencoders for rich latent representations, which we adopted in our work.

Unsupervised learning holds great potential for sequential data problems such as natural language
processing (NLP). Ammar et al. (2014) implemented a conditional random field (CRF) autoencoder
to infer structure predictors from the latent representation generated. The focus was on sequential
latent structures with first order Markov properties in NLP. CRF autoencoders differ from neural
network (NN) autoencoders in that they learn specific interpretable regularities of interest instead
of feature representations. The study demonstrated that the CRF autoencoder outperforms Hidden
Markov Models for unsupervised structure prediction. LSTM and CRF autoencoders are similar in
that they are both sequential variants of the standard autoencoder.

Srivastava et al. (2015) made use of an LSTM autoencoder to reconstruct video frames. The encoder
LSTM mapped an input sequence to a fixed length representation, and the decoder LSTM would
decode the representation in a reversed order as illustrated in Figure 1. The reversed order makes
optimisation easier because the model can start with attention to low range correlations. The study
made use of an LSTM with 128 hidden units and it was found that a bigger LSTM did not improve
the predictive accuracy for future video frames. Two reasons prevent the autoencoders from learning
a trivial identity mapping: i) There is a fixed number of hidden units, making it unlikely to learn a
trivial mapping for arbitrary length input sequences; and ii) the same dynamics have to be applied
recursively on the same representation. For our implementation, only the latter holds because the
input sequences are segmented to have equal lengths. Thus we implemented additional regularisation
to mitigate identity mapping.

When online predictions are not required, the predictive accuracy of LSTMs can be improved with
the addition of a backwards analysing layer, resulting in a bidirectional LSTM. Jagannatha and Yu
(2016) compared bidirectional LSTMs, bidirectional gated recurrent units (GRUs), and conditional
random fields (CRFs) in the extraction of medical labels from EHR notes. The LSTMs and GRUs
had similar performance, and the 1% lead of the GRU performance was attributed to the combination
of their simplicity and the small amount of training data. It is speculated that the LSTMs would
yield superior performance on larger datasets. Both RNNs outperformed the CRFs. The machine
learning task was to classify a sentence or document of medical notes into one of 9 classes, and the
best performance obtained was an F-score of 0.8031 with the GRUs.

3 Methods

The semi-supervised approach consists of an autoencoder (Ammar et al., 2014) for representation
inference, a dimensionality reduction step by means of the t-distributed Stochastic Neighbour Em-
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Figure 1: LSTM Autoencoder architecture. Here v denotes the input, and the subscripts indicate
different time steps. The hidden unit weights for the encoder and decoder are represented by W1 and
W2 respectively. The representation is passed to the decoder at the last time step, after which the
decoder attempts to reconstruct the inputs v̂. The dotted boxes depict the optional conditional input
that can be used in such a model.(Adapted from: Srivastava et al. (2015))

bedding (t-SNE) method (van der Maaten and Hinton, 2008), and variational Bayesian estimation
of Gaussian Mixture Models (GMMs) for clustering and relabelling. The efficacy of relabelling the
data is determined by means of a long short-term memory (LSTM) recurrent neural network (RNN)
classifier.

3.1 Bidirectional LSTM autoencoder

The goal of NN autoencoders has been to learn feature representations that improve generalization in
supervised learning problems: (Ammar et al., 2014; Collobert and Weston, 2008; Socher et al., 2010;
Vincent et al., 2008). The autoencoder attempts to learn a function hW,b(x) ≈ (x), where W and b
are the weights and bias terms of the NN, and x is the input data. Deep learning techniques that are
modified to better handle time series data yield better results than deep learning techniques treating
the input as static data (Längkvist et al., 2014). Thus an LSTM autoencoder is employed to learn
representations of the temporal data. The LSTM autoencoder consists of 2 RNNs, the encoder LSTM
and the decoder LSTM. The input to the model is a sequence of vectors. After the encoder has read
the last input element, the output state is copied to the decoder, which then outputs an estimation of
the target sequence.

More specifically we implement a bidirectional LSTM autoencoder with the same architecture as
described in (Graves et al., 2013). This results in one LSTM encoding the sequence from the start
to the end, and a different LSTM encoding the sequence from the end to the start, as illustrated in
Figure 2. This results in 2 hidden representations, one for each LSTM. Intuitively, this allows the
temporal model to generate a more accurate representation of the signals. RNN autoencoders can be
conditional by using the output of a previous time step as the input to the current time step during
decoding. Our implementation is unconditional because the goal is to generate the most informative
hidden representation, and reducing the aid provided to the decoder during the end-to-end training
results in a more encapsulating latent representation.

In general, autoencoders have a decreasing number of hidden units up to the pinch point (final hidden
layer of the encoder) in the model. Medical time series are low-dimensional, rendering a pinching
autoencoder impractical. It was assumed that due to the temporal nature of the data, an increasing
number of hidden units in the LSTM autoencoder could learn effective latent representations. Even
if the number of hidden units is larger than the input dimensions, the autoencoder can learn useful
representations if proper constraints are imposed on the network (Bengio et al., 2007). Our imple-
mentation made use of 15 hidden units in a single layer bidirectional LSTM for the autoencoder. This
results in 30 hidden units in both the encoder and decoder.

In order to prevent the model from learning a trivial identity mapping, we regularise the model by
implementing a denoising-autoencoder. The type of noise added to the input data depends on the
dataset because, in addition to regularising the model, it determines the type of noise removed from
new data samples processed by the autoencoder. The objective function J used for training the
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Figure 2: Bidirectional LSTM autoencoder architecture implemented in this study (number of
elements in each layer are arbitrary examples). One LSTM encodes a hidden representation from the
input data (bottom layer) in a forward fashion. Another LSTM encodes a second hidden representation
in a backwards fashion. The t’s denote the time steps of the multi-variate time series x. The decoded
backwards and forwards layers are linearly mapped to reconstruct a matrix with the same dimensions
as the input matrix.

autoencoder is the squared-error defined as

J(W, b|x, x̂) = 1

2
||hW,b(x)− x̂||2 (1)

with x̂ being the reconstructed inputs. The model is trained using the Adam optimisation technique
(Kingma and Ba, 2014) with a learning rate of 0.001 and a convergence criteria of a cost decrease less
than 10−4 over 30 iterations. Hereafter the dataset is encoded and the dimensionality of the resulting
latent representation is reduced using the t-Distributed Stochastic Neighbour Embedding discussed in
the following section.

3.2 t-Distributed Stochastic Neighbour Embedding

The t-Distributed Stochastic Neighbour Embedding (t-SNE) method developed by van der Maaten
and Hinton (2008) maps high-dimensional data into a low-dimensional (typically 2D or 3D) manifold
and groups similar samples. This is achieved by minimising the divergence between a distribution
that measures pairwise similarities of the input objects and a distribution that measures pairwise
similarities of the corresponding low-dimensional points in the embedding. Conventional methods
for minimising the divergence scale quadratically with the number of objects, which limits the
applicability to a few thousand data points. To mitigate the computational constraint, the Barnes-Hut
approximation (Van Der Maaten, 2014) is implemented.

t-SNE requires specification of the perplexity parameter, which loosely guides the balance of attention
between global and local aspects of the data. In a sense, the parameter is a guess of the number of
close neighbours each point has (Wattenberg et al., 2016). Typical values of perplexity are between 5
and 50, and empirically 50 was found to be the best setting for our datasets. A weakness of t-SNE
is that it is sensitive to data with high intrinsic dimensionality. A mitigation for this shortfall is
to perform t-SNE on the nonlinear representation of the data produced by an autoencoder van der
Maaten and Hinton (2008).

3.3 Variational Bayesian estimation of a Gaussian mixture

The main difficulty in clustering samples is knowing a priori how many clusters there are and what
distribution each cluster has. To cluster the 2D representations in a non-parametric fashion, variational
Bayesian estimation of Gaussian Mixture Models (GMMs) is used. A Dirichlet Process (DP) prior is
used for the weights distribution. The DP inference algorithm is approximated and uses a truncated
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distribution with a fixed number of components, called the Stick-breaking representation (Bishop,
2006). The number of components used almost always depends on the data, which is ideal for this
application. The DP is a prior probability distribution on clusterings with an infinite unbounded
number of partitions.

In this implementation, the upper bound hyperparameter on the number of components is specified as
1000, which is much larger than the number of different clusters expected in the datasets and chosen
to simulate an infinite prior on the number of clusters. The weight concentration hyperparameter is
chosen as 1, where a lower value leads to fewer clusters and vice versa.

3.4 Relabelling and classification

All the samples subjected to the clustering are labelled with the final outcome of the patient. The
GMM inferred clusters (Section 3.3) are labelled according to the mode label of the samples within
each cluster. Samples are then relabelled according to the label of their respective clusters. It is
assumed that during the relabelled segment of a patient’s stay, they experienced physiological changes
indicative of the state represented by the cluster. For example, a patient that had a healthy final
outcome might have had multiple segments in their time series that represented deterioration.

An LSTM classifier, with the same structure as that in (Graves, 2013), is then trained and tested
separately on both the original dataset and the relabelled dataset. The LSTM has 128 units in one
hidden layer, is regularised using 50% dropout, and trained using the Adam optimisation technique
(Kingma and Ba, 2014) for 3000 epochs with a minibatch size of 512 samples. The datasets are split
into a ratio of 50:10:40 for the training, validation, and testing sets. The best model from all the
training epochs was determined by means of the validation set.

4 Data

The efficacy of the technique developed was evaluated with 2 datasets. The first dataset contained
the first 48 hours of vital signs for 3 neonatal intensive care unit (NICU) patients. The signals used
for analysis were electrocardiogram (ECG), blood pressure, and oxygen saturation. The data were
segmented into samples with a length of 200 time steps at 60 Hz, resulting in a total of 134,812
samples from 3 different classes: normal, dying, and intraventricular haemorrhage.

The second dataset contained 48 half-hour excerpts of ECG recordings of 47 patients from the
MIT-BIH arrhythmia database (Moody et al., 2001; Goldberger et al., 2000). Single heart beats were
extracted using the Pan-Tompkins algorithm (Pan and Tompkins, 1985) which has a reported accuracy
of 99.3% on this dataset. The result is 106,848 heart beat samples of 216 time steps at 360 Hz. The
five heart beat classes selected from the database were: normal beat, right bundle branch block beat,
left bundle branch block beat, paced beat, and premature ventricular fibrillation. Both datasets were
normalised to have a zero mean and a range of [-1,1].

5 Results

Figure 3 illustrates that the autoencoder does not learn a trivial identity mapping of the data, and it
is able to retain the important features of the original signal. Gaussian noise with a zero mean and
0.1 variance was added to 30% of the ECG data because the most likely type of noise inherent to
ECG data was assumed to be Gaussian. For the NICU data, the most likely noise is missing values
(replaced by zeros). Thus 30% of the NICU data was masked to zero as a means of adding noise to
the data.

The dimensionality of the ECG encoded representations was reduced from 216 ∗ 30 to 2 values per
sample using t-SNE. The 2D embedding after 10,000 iterations is illustrated in Figure 4a. t-SNE
adapts its notion of distance to regional density variations in the dataset. Consequently, it naturally
contracts sparse clusters and expands dense ones, evening out the clusters sizes. Thus the relative
sizes of the clusters are not elucidated in t-SNE plots (Wattenberg et al., 2016). Moreover, the distance
between clusters greatly depends on the chosen perplexity and is therefore not an informative metric.
t-SNE has become popular because it’s incredibly flexible and can often find structure were other
dimensionality reduction techniques cannot. Unfortunately, the flexibility also makes the output
difficult to interpret. The GMM clusters fitted to the 2D embedding by means of variational Bayes
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Figure 3: Example input and output of the autoencoder for ECG data. Gaussian noise with a zero
mean and 0.1 variance was added (middle plot) to a randomly selected 30% of the original data (top
plot). The autoencoder reconstruction (bottom plot) is not a precise replication of the original data,
and the important features are retained.

are depicted in Figure 4b. The different colours represent different clusters. For relabelling, many
small GMM clusters are ideal because this would lead to greater confidence in the label assigned to
each cluster.

(a) (b)

Figure 4: Plots of the t-SNE 2D embedded output (4a) and the GMM relabelling (4b). Hand-picked
signals are displayed in (4a), and the original classes are indicated by different colours. The hand-
picked signals show how similar the outliers look to the rest of the cluster. In (4b) each color
represents a different cluster with its own mode label.

For the NICU encoded representations, the dimensionality was reduced from 200 ∗ 30 to 2 using
t-SNE. The result after 10,000 iterations is illustrated in Figure 5a. The GMM clusters fitted to
the 2D embedding are shown in Figure 5b. Both figures elucidate the difficulty of clustering the
representations, and that the t-SNE did not separate the samples adequately.

The classification accuracy found for the ECG dataset was 0.97 and 0.99 for the original and relabelled
data respectively. For the NICU dataset, the model yielded an accuracy of 0.98 and 0.93 for the
original and relabelled datasets respectively.
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(a) (b)

Figure 5: Plots of the t-SNE 2D embedded output (5a) and the GMM relabelling (5b). In (5a) the
original classes are indicated by different colours. In (5b) each color represents a different cluster
with its own mode label.

6 Discussion

This study employed a denoising bidirectional LSTM autoencoder to infer latent representations
of data. The representations were then mapped into a low-dimensional embedding using t-SNE
before fitting GMM clusters to the 2D data using variational Bayesian estimation. The data was
relabelled according to the inferred clusters. The classification accuracy was compared for the
original and relabelled datasets using an LSTM classifier. It was found that the proposed approach
for relabelling data to improve the accuracy and granularity of annotations resulted in an increase of
2% in classification performance for the ECG dataset and a decrease of 5% for the NICU dataset.

Intuitively with more accurate labels, more accurate classification is expected. However, the results
of the NICU dataset indicate that what we believe to be more accurate labelling, does not improve
classification accuracy. One reason could be that the t-SNE parameters need further refinement.
Another possibility is that classification of the true medical states is harder than classifying the
state of the whole signal (original labels). Larger datasets might mitigate this issue. Whether the
proposed technique for labelling data improves classification accuracy remains inconclusive, but
the semi-supervised approach has potential for further refinement and various other applications.
Adversarial autoencoders (AAE) (Makhzani et al., 2015) allow unsupervised clustering and take
a similar approach to the proposed technique, future work will investigate the efficacy of AAE in
medicine.
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