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1 Introduction to Variational and Importance Weighted Autoencoders

Deep generative models for unsupervised learning have recently received considerable attention
[1, 2, 3, 4, 5, 6]. These models can find a set of low-dimensional representative latent features that
can accurately describe observed data. Furthermore, they can also infer the underlying mechanism
that generates, from these features, new data instances similar to the observed ones. In general, these
models need to perform posterior inference during learning, a task that is carried out by training, in
addition to the top-down generative network, a bottom-up recognition network. This recognition
network is used to predict the posterior distribution of the latent variables given the observed ones.

Variational autoencoders (VAEs) are a family of generative models in which the parameters of the
generative network and the recognition network are optimized during training to maximize a lower
bound on the log-likelihood [3, 5, 6]. The VAE in [3] defines a generative process p(xi|zi,θ) for
the observed variables of the i-th data instance, xi, given the corresponding latent variables zi.
p(xi|zi,θ) is set to be a factorized Gaussian distribution (or a product of Bernoulli distributions in
the case of binary data) whose mean and variance is computed by a deterministic feed-forward neural
network with parameters θ. The recognition network computes q(zi|xi,φ), an approximation to
p(zi|xi). q(zi|xi,φ) is also a factorized Gaussian whose mean and variance is also computed by
a feed-forward network with parameters φ. The prior for each zi, p(zi), is set to be a product of
standard Gaussians. During training, θ and φ are found by maximizing the lower bound

L(θ,φ) =

N∑
i=1

Ezi
[log p(xi|zi,θ)]−

N∑
i=1

KL(q(zi|xi,φ)||p(zi)) , (1)

where zi is sampled from q(zi|xi,φ) and KL(·||·) is the Kullback-Leibler divergence. The expec-
tations can be approximated via Monte Carlo, and the required gradients can be obtained using
automatic tools. The objective in (1) is optimized using stochastic optimization tools combined with
the reparametrization trick [3, 7].

The previous VAE is improved by the importance weighted autoencoder (IWAE) [6]. The IWAE
considers a tighter lower bound of the log-likelihood of the data obtained by importance sampling:
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where each z
(1)
i , . . . , z

(k)
i is sampled from the corresponding posterior approximation. When k = 1,

Lk(θ,φ) = L(θ,φ). When k > 1, a tighter bound is obtained. The objective in (2) can be
approximated and optimized as the objective of the previous VAE. Several experiments show that
when k > 1 the IWAE outperforms the VAE in terms of the test log-likelihood. Furthermore, in [6] it
is considered multiple stochastic hidden layers in the recognition model and the generative network.
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2 Randomness in the Neural Network Parameters

We consider the possibility of enhancing the VAEs described in the previous section by introducing
random network parameters. Instead of considering just a single point-estimate for the parameters
of the generative model θ and the recognition network φ, we introduce probability distributions
over them. We expect that this will lead to more flexible models with an improved generalization
performance, as in the networks considered in [8]. We set the generative model to be p(xi|zi,θ)q(θ)
and the recognition network to be q(zi|xi,φ)q(φ), where q(θ) and q(φ) are variational distributions
which have the form of a factorizing Gaussian. The means and variances of these distributions
Ω = {µθ,µφ,σ2

θ ,σ
2
φ}, are shared across data instances and they are found by maximizing the

corresponding IWAE objective:
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where each θ
(j)
i , φ(j)

i and z
(j)
i , for j = 1, . . . , k, is sampled from q(θ), q(φ) and q(zi|xi,φ(j)

i ),
respectively. The objective in (3) can also be approximated by Monte Carlo and optimized using
stochastic optimization tools, as in the previous section. Note the lack of a prior distribution for the
parameters of the generative model, θ, in our formulation. This is because q(θ) is simply a variational
distribution. The lack of p(θ) can also be motivated by the lack of any regularization for the weights
of the generative network in the original VAE [3]. Furthermore, according to our experiments (not
shown), introducing a prior distribution p(θ) for the generative model deteriorates the results reported
in the next section.

3 Experimental Evaluation

The proposed IWAE method with random network weights (IWAER) is evaluated on two datasets:
MNIST [9] and Omniglot [10]. The generative and recognition models are neural networks with one
deterministic hidden layer of 400 units. We consider 20 latent variables. We train each method during
a total of 500 epochs with ADAM and its default parameters [11]. A minibatch size of 100 is used and
k, the number of samples, is set to 25. The quality of the inference and generative networks learnt is
compared using the log-likelihood of test images, which is computed using importance sampling with
2000 samples drawn from the recognition model and the variational distributions q(θ) and q(φ) [6].
We compare with the results obtained by the IWAE and by a version of IWAER that only considers
randomness in the recognition weights, IWAERrec. The results averaged over 5 trials are displayed
in Table 1. These results show a significant gain obtained by considering random network weights,
demonstrated by a better log-likelihood on test data of IWAER.

Table 1: Average test log-likelihood for each method.

Dataset IWAE IWAER IWAERrec
MNIST -95.182±0.022 -94.346±0.025 -94.709±0.025
Omniglot -118.771±0.035 -118.540±0.049 -118.647±0.031

4 Conclusions and Future Work

We have addressed the task of introducing randomness in the parameters of the neural networks
employed in the IWAE for generative and recognition tasks. For this, we have introduced additional
variational distributions in the model, i.e., q(θ) and q(φ), whose parameters are found by maximizing
a lower bound on the log-likelihood of the training data. The resulting model, IWAER, has been eval-
uated on two datasets: MNIST and Omniglot. The results obtained show a significant improvement
in terms of the log-likelihood of test images. These results confirm the benefits of a more flexible
recognition and generative model obtained by considering random network weights. Future work
includes addressing more complicated networks with several stochastic hidden layers, similar to the
ones described in [6]. In that case we expect to obtain results that are close and even better than the
state-of-the-art. Additional future work includes considering other approaches for training the model,
such as black-box-alpha [12] and considering other models such as the ladder-VAE [13].
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