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1 Introduction

During past several years, several works about treating dropout as a Bayesian model have appeared
[1,3,4]. Authors of [1] proposed a method that represents dropout as a special case of Bayesian model
and allows to tune individual dropout rates for each weight.

Another direction of research is the exploration of the ways to train neural networks with sparse
weight matrices [6,9] and the ways to prune excessive neurons [8]. One of the possible approaches
is so-called Automatic Relevance Determination (ARD). A typical example of such models is the
Relevance Vector Machine [4]. However, these models are usually relatively hard to train.

In this work, we introduce a new dropout-based way to obtain the ARD effect that can be applied to
complex models via stochastic variational inference framework.

2 Theory

Variational dropout [1] is a recent technique that generalizes Gaussian dropout [7]. It allows to
set individual dropout rates for each weight/neuron/layer and to tune them with a simple gradient
descent based method. As in most modern Bayesian models, the goal is to obtain the variational
approximation to the posterior distribution via optimization of the variational lower bound (T)):

‘C(q) = Eq(w) Ing(T ‘ X7 w) - DKL(Q(w) H pprior(w)) — man (1)

To put it simply, the main idea of Variational dropout is to search for posterior approximation in a
specific family of distributions: q(w;) = N'(6;, ;02). Then the reparameterization trick [12] for this
model is equivalent to plain Gaussian dropout w; ~ q(w;) < w; = 0;(\/aze; + 1), ;5 ~ N(0,1).
Now we can treat ¢ as variational parameters and optimize the lower bound w.r.t. € and . The prior
distribution is chosen to be log-scale uniform distribution. If we optimize the lower bound w.r.t 0
with fixed «, log-scale uniform prior makes Variational dropout equivalent to Gaussian dropout.

In the original paper, authors reported difficulties in training the model with large values of dropout
rates o and only considered the case of o; < 1 (dropout rate 0.5 or less). However, the case of large
oy; is very interesting as having high dropout rates (o; — 4-00) effectively means that i-th node, i.e.
a weight or a neuron is always ignored and can be removed from the model. We study this case
in a simpler setting of linear models, such as linear regression and binary and multiclass logistic
regression. Because of the limited space, we presented only multiclass logistic regression results in
the experimental section.

*Bayesian Methods Research Group: http://bayesgroup.ru
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Table 1: Test set prediction accuracy and achieved sparsity level

Accuracy Sparsity
Dataset VD-ARD LI-LR RVM VD-ARD LI-LR RVM
MNIST 0.926 0919 N/A 69.8% 57.8%  N/A
DIGITS 0.948 0.955 0.945 75.4% 38.0% 74.6%
DIGITS + noise 0.930 0937 0.846 87.6% 559% 85.7%

3 Contribution

Our contribution consists of three parts. Firstly, we came up with a new approximation of the KL
divergence (2). As KL divergence is not tractable [1], we used a sampling technique to obtain the
approximation (2). The original estimate was obtained under the assumption that a; < 1 [1], so we
propose an estimation of the KL divergence that remains correct for all values of . An illustration
of different approximations is presented in figure

—Drr(q(w; | 0:, ) || pprior (wi)) = 0.64 (1.5 (1.3 + log o)) — 0.5 log(1 4+ a; ') + const (2)

Secondly, we came up with a trick that allows us to train this model in a stochastic setting and to
learn large values of a, avoiding the problem of gradients with large variance. We found that using
another parameterization is crucial for training such models. We introduce o = «;67 and optimize
the lower bound w.r.t. (8,log o) instead of (6, ).

wi ~ q(w; |0;, ;) @ w; =0;(1+Va-¢)=0;+0;-€, ¢~N(0,1) 3)

This trick transforms the multiplicative noise of Gaussian dropout to an equivalent additive noise. The
loss function remains the same. However, this method radically reduces the variance of the gradient
w.r.t. 8, because the additive noise does not depend on 6.

Finally, we showed explicitly that driving the dropout rate «; to infinity makes the variational
distribution ¢(w;) tend to a delta function centered at 0, which makes our model similar to classical
ARD models. However, it should be noted that this approach is different. In dropout-based models,
the ARD effect arises when we put an infinitely strong noise on model weights through approximate
Bayesian inference in a model with a fixed prior. In classical ARD models [4] the prior distribution is
not fixed and is tuned on the training dataset. Our approach comes more naturally from the Bayesian
framework, as the prior distribution should remain independent from the training data.

An iteration of the final training scheme consists of taking a minibatch, sampling the activations using
the local reparameterization trick [1], computing an estimate of the lower bound (2) and its gradient
using parametrization trick (0,log o?). This stochastic gradient is then used to update model
parameters via some SGD-based optimization method (we used Adam [2]).

4 Experiments

We have explored the relevance determination quality of our algorithm as well as the classification
accuracy of the resulting sparse model. We used MNIST [10] and DIGITS [11] datasets for evaluation.
We compared our approach to other standard methods of training sparse linear models, such as L1
logistic regression (L1-LR) and the Relevance Vector Machine classifier (RVC). The percentage of
removed features and the test set classification accuracy can be seen in Table[I] The result of the
RVC on MNIST is not present, as most available implementations of the RVC can not work with
datasets of that size (60000 objects in the training dataset).

The optimal value of the regularization parameter for L1-LR was found using cross-validation. The
RVC was used with default hyperparameters and our method does not have any hyperparameters.

We clipped the result by the value log ai; > 5, which corresponds to binary dropout rate greater than
0.99. Corresponding parameters 6; were set to zero during testing time in all experiments.
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Figure 1: An illustration of the different  Figure 2: Left: an example of an object with concate-

approximations of divergence. nated noise. Right: trained dropout rates, each heat map
corresponds to a weight vector in multiclass model. ¢
is a class label and 1 is a feature index

We also experimented with introducing irrelevant features to DIGITS dataset. We concatenated each
picture with a picture of the same size that contains independent Gaussian noise of roughly the same
magnitude as the original image. An example of an object and the resulting dropout rates are shown
in Figure 2] The code is available at https://github.com/da-molchanov/vd-ard-bdl16.

5 Discussion

We showed that the ARD effect is quite strong, and the accuracy of the resulting model is relatively
high despite the fact that we used stochastic optimization instead of efficient and accurate solvers that
are used in L1-regression or the RVM. Our future work would be to apply this approach to neural
networks because this method could lead to discovering a way of training sparse neural networks. It
could also be used as a regularization technique or as a way to prune excessive weights or groups of
weights from the model, which in fact allows adjusting network topology automatically.
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