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1 Introduction

There exists a vast array of machine learning applications where the underlying datasets are sequential.
Applications range from the entirety of robotics, to speech, audio and video processing. While neural-
network-based approaches have dealt with the issue of representation learning for sequential data, the
important question of modeling and propagating uncertainty across time has rarely been addressed by
these models. For a robotics application such as a self-driving car, however, it is not just desirable,
but essential to have complete predictive densities for variables of interest. When trying to stay in
lane and keep a safe following distance from the vehicle front, knowing the uncertainty associated
with lanes and lead vehicles is as important as the point estimates.

Recurrent models with long short-term memory (LSTM) [4] have recently emerged as the leading
approach to modeling sequential structure. LSTM cells use a gating mechanism that stabilizes the
flow of the back-propagated errors and hence improve the learning process of the model. While the
LSTM already provides state-of-the-art results on speech and text data [3, 6], quantifying uncertainty
or extracting full predictive distributions from deep models models is an area of active research [2].

In this paper, we quantify the predictive uncertainty of deep models by following a Bayesian
nonparametric approach. In particular, we propose kernel functions which fully encapsulate the
structural properties of LSTMs, for use with Gaussian processes. The resulting model enables
Gaussian processes to achieve state-of-the-art performance on sequential regression tasks, while also
allowing for a principled representation of uncertainty, and non-parametric flexibility. For scalability,
we use semi-stochastic optimization and exploit the algebraic structure of these kernels, decomposing
the relevant covariance matrices into Kronecker products of circulant matrices, for O(n) training
time and O(1) test predictions [8]. Our model not only can be interpreted as a Gaussian process with
a recurrent kernel, but also as a deep recurrent network with probabilistic outputs, infinitely many
hidden units, and a utility function robust to overfitting.

More details can be found in the full version of this paper available on arXiv [1]. Our code is available
at http://github.com/alshedivat/kgp/.

2 Methods

We consider the problem of learning a regression function that maps sequences to real-valued targets.
Formally, let X̄ = {x̄i}ni=1 be a collection of sequences, x̄i = [x1

i ,x
2
i , · · · ,xli ], xj

i ∈ X . Let
y = {yi}ni=1, yi ∈ R, be a collection of corresponding real-valued targets. Assuming that the
maximum length of a sequence is L, the goal is to learn a function, f : XL 7→ R, from some family,
F , based on the available data.

We propose to use Gaussian processes (GPs) with LSTM-structured kernel functions:

k̃(x̄, x̄′) = k(φ(x̄), φ(x̄′)), where x̄, x̄′ ∈ XL, and k̃ : (XL)2 7→ R.
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Algorithm 1 Semi-stochastic gradient
descent with delayed kernel updates.

input Data – (X,y), kernel – kθ(·, ·),
recurrent transformation – φw(·).

1: Initialize θ andw; compute initial K.
2: repeat
3: θ ← θ + updθ(X,w,K).
4: for all mini-batchesXb inX do
5: w ← w + updw(Xb,w,K

stale).
6: end for
7: Update the kernel matrix, K.
8: until Convergence

output Optimal θ∗ andw∗

Figure 1: Left: Autonomous car route. Middle: Point-wise estimation of the lanes. Dashed – ground truth, blue –
LSTM predictions, red – GP-LSTM predictions. Right: The algorithm used to train GPs with recurrent kernels.

where φ : XL 7→ H denotes the recurrent transformation. We train the model, GP-LSTM, by optimiz-
ing the probability of the training data, w.r.t. θ and w, having performed Bayesian marginalization
over the induced distribution over functions given by the Gaussian process. The gradient of the
objective w.r.t. the parameters of the recurrent transformation can be written as follows:

∂L
∂wl

=
1

2

∑
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)
ij

{(
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)>
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)>
∂hj
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}
.

Generally, neither the GP objective nor its gradients decompose over the data. However, the gradient
does factorize when the the kernel matrix is fixed. This observation motivates us to propose a semi-
stochastic optimization procedure that uses delayed kernel updates for efficiency (see Algorithm 1 in
Figure 1). Convergence of the algorithm is given by Theorem 1 (further details and proofs can be
found in the full version of the paper [1]).
Theorem 1. Semi-stochastic gradient descent with τ -delayed kernel updates converges to a fixed
point when the learning rate, λt, decays as Θ(1/τt

1+δ
2 ) for any δ ∈ (0, 1].

3 Results

Our model, GP-LSTM, outperforms a number of classical (GPs, NARX, recurrent nets) and recent
(recurrent GPs [5]) baselines on sequence regression tasks (a subset of results is given in Table 1).
Additionally, the model is able to quantify predictive uncertainties (see Figure 1 for an example of
lane prediction).

Our semi-stochastic asynchronous gradient descent speeds up convergence of the training and, when
used in conjunction with KISS-GP [7, 8], scales as O(n) with the number of training data and scales
linearly with the number of inducing points. Prediction requires constant time per testing point1.

Table 1: Performance of the models in terms of RMSE on system identification & autonomous driving data.

Data Task NARX RNN LSTM RGP GP-NARX GP-RNN GP-LSTM

Drives
system ident.

0.423 0.408 0.382 0.249 0.403 0.332 0.225
Actuator 0.482 0.771 0.381 0.368 0.891 0.492 0.347

Car

speed 0.114 0.152 0.027 — 0.125 0.088 0.019
gyro yaw 0.189 0.223 0.121 — 0.242 0.238 0.076
lane seq. 0.128 0.331 0.078 — 0.101 0.472 0.055
lead vehicle pos. 0.410 0.452 0.400 — 0.341 0.412 0.312

1These results are omitted due to space constraints, but are available in [1].
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