
Approximate Inference for
Deep Latent Gaussian Mixtures

Eric Nalisnick1, Lars Hertel2, and Padhraic Smyth1

1Department of Computer Science
2Department of Statistics

University of California, Irvine
{enalisni, lhertel, p.smyth}@uci.edu

1 Introduction

Deep latent Gaussian models (DLGMs) composed of density and inference networks [14]—the
pipeline that defines a Variational Autoencoder [8]—have achieved notable success on tasks ranging
from image modeling [3] to semi-supervised classification [6, 11]. However, the approximate posterior
in these models is usually chosen to be a factorized Gaussian, thereby imposing strong constraints on
the posterior form and its ability to represent the true posterior, which is often multimodal. Recent
work has attempted to improve the quality of the posterior approximation by altering the Stochastic
Gradient Variational Bayes (SGVB) optimization objective. Burda et al. [2] proposed an importance
weighted objective, and Li and Turner [10] then generalized the importance sampling approach to a
family of α-divergences. Yet, changing the optimization objective is not the only way to attenuate
posterior restrictions. Instead, the posterior form itself can be made richer. For instance, Kingma
et al. [7] employ full-covariance Gaussian posteriors, and Nalisnick & Smyth [13] use (truncated)
GEM random variables. This paper continues this later line of work by using a Gaussian mixture
latent space. We describe learning and inference for not only the traditional mixture model but also
Dirichlet Process mixtures [1] (with posterior truncation). Our deep Latent Gaussian mixture model
(DLGMM) generalizes previous work such as Factor Mixture Analysis [12] and Deep Gaussian
Mixtures [15] to arbitrary differentiable inter-layer transformations.

2 Latent Gaussian Mixtures

We now describe a novel modification of the DLGM/VAE in which we use a Gaussian mixture model
(GMM) as the approximate posterior. We modify the generative process to be πi ∼ Dir(α) , zi ∼∑K

k=1 πi,kN(z;θk) , xi ∼ pθ(x|zi) where pθ(x|zi) is the density network. We assume the poste-
rior factorizes as q(π, z|xi) = q(π|xi)q(z|πi,xi) =

∏
K−1 Kumar(ai,k, bi,k)

∑K
k=1 πi,kNθk

(z|xi)
where Kumar(a,b) denotes the Kumaraswamy distribution [4]. Notice that we bypass the complication
of sampling valid mixture weights πi by, firstly, using the Dirichlet’s marginal (aka ‘stick-breaking’)
construction and, secondly, employing the Kumaraswamy as the approximate posterior for the
Dirichlet’s marginal Betas. The Kumaraswamy has a closed-form inverse CDF that can serve as a
valid differentiable non-centered parametrization (DNCP) [13] whereas the Beta has no such DNCP.
Having defined the prior and posterior, we now can write the SGVB evidence lowerbound (ELBO)
for this model as:

LSGVB =
∑
k

µπk
[
1

S

∑
s

log pθ(xi|ẑi,k,s) + Eqk [log p(zi)]]

− KLD[q(πk|xi)||p(πk)]−
1

S

∑
s

log
∑
k

π̂i,k,sq(ẑi,k,s;φk)

(1)
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Figure 1: Computation graph of a Deep Latent Gaus-
sian Mixture Model (DLGMM). The inference network
computes the parameters of K mixture components.
The decoder network receives a sample from each and
computes the reconstruction. The recursive process by
which the mixture weights πk are generated is omitted.
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Figure 2: Subfigures (a) and (b) show samples from the two mixture components at the extremes of
the latent space. Subfigures (c) and (d) show t-SNE embeddings of the Gauss-VAE and DLGMM
latent space (respectively).

where π̂ and ẑ are S samples taken via non-centered parametrizations and µπk
is the mean of the

posterior weight distribution. This model has the benefit of relatively straightforward DNCPs but has
the drawback of needing to run the density network (‘decoder’) K times, where K is the number
of components, for each forward pass. This expensive marginalization is required because of the
difficulty in sampling from the mixture directly, i.e. z ∼

∑
k πkqk(z)

1.

The computation path of the the proposed DLGMM is summarized in Figure 1. The inference
network computes the parameters of the K mixture components, and the density network is run for
a sample from each. The mixture weight, once sampled, is used no where in the computation path
to reconstruct the data. Rather its influence is in the ELBO, weighting each term according to the
corresponding component. Equation 1 can be extended to multiple stochastic layers, but the density
network must be run Ks times, where K is the number of components and s the number of stochastic
layers, for each forward pass.

As we are already using the Dirichlet’s stick-breaking construction, it is easy to extend the model
to infinite mixtures defined by the Dirichlet Process (assuming posterior truncation), i.e. G(·) =∑∞
k=1 πkδζk where δζk is a discrete measure concentrated at ζk ∼ G0 and the πks are, again, random

weights chosen independent of G0 such that 0 ≤ πk ≤ 1 and
∑
k πk = 1. The only significant

change is the prior on the Beta marginals. For all k, we have vi,k ∼ Beta(1, α0) where α0 is the
concentration parameter. We assume the variational posterior takes the same form as above and is
truncated to T components, as is usually done when performing variational inference for DP mixtures
[1].

3 Experiments

We compared our proposed deep latent Gaussian mixture model (DLGMM) and deep latent Dirichlet
Process mixture model (DLDPMM) to the single-Gaussian VAE/DLGM (Gauss-VAE) [8, 14] and
the stick-breaking VAE (SB-VAE) [13] on the binarized MNIST dataset and Omniglot [9], using the
pre-defined train/valid/test splits. We optimized all models using AdaM [5] with a learning rate of
0.0003 (other parameters kept at their Tensorflow defaults), batch sizes of 100, and early stopping

1Alex Graves’ note Stochastic Backpropagation through Mixture Density Distributions describes a technique
for calculating gradients though samples from a mixture model, but we found the method requires many samples
(100+) of the latent variables and did not result in models with competitive marginal likelihoods.

2



k=3 k=5 k=10
DLGMM 9.14 8.38 8.42
SB-VAE 9.34 8.65 8.90
Gauss-VAE 28.4 20.96 15.33

(a) MNIST test error for kNN on latent space

− log pθ(xi)
MNIST OMNIGLOT

DLGMM (500d-3x25s) 96.50 123.50
DLDPMM (500d-17tx25s) 96.91 123.76
Gauss-VAE (500d-25s) 96.80 119.18
SB-VAE (500d-25t) 98.01 −

(b) Estimated Marginal Likelihood

Figure 3: Subtable (a) shows MNIST test error for kNN classifiers trained on samples from the latent
distributions. Results for 3, 5, and 10 (k) neighbors are given. Each model was trained with no label
supervision. Subfigure (b) reports the (Monte Carlo) estimated marginal likelihood on the test set.

with 30 look-ahead epochs. For the marginal likelihood results, all Gaussian priors are standard
Normals and all Dirichlets are symmetric, with α = 1, except for the DLDPMM, which has α0 = 1.

Qualitative evaluation. First we compared the models qualitatively by examining samples and class
distribution within the latent space. Samples from two components of a 5-component DLGMM are
shown in Subfigures (a) and (b) of Figure 2. Normal priors were placed on the five components with
means set to µ = {−1.5,−.75, 0, .75, 1.5} and all variances set to one. The samples are from the
extremes of the prior, i.e. µ1 = −1.5 and µ5 = 1.5. We see that the DLGMM learned not only
recognizable MNIST digits but also to divide their factors of variation into different parts of the
latent space. Thin digits such as sevens are generated from the component with the most negative
prior mean and wide digits such as zeros are generated from the component with the most positive
prior mean. Also we visually examined the MNIST class distribution in the latent space via t-SNE
projection. The 2D embeddings are shown in Figures 2 (c) and (d) for the Gauss-VAE and DLGMM
respectively; colors denote digit classes. The DLGMM’s latent space exhibits conspicuously better
clustering. We validate this observation empirically below using kNN.

Quantitative evaluation. We compared the models quantitatively using a k-Nearest Neighbors
(kNN) classifier on their latent space as well as by calculating the marginal likelihood of a held-out
set. Table (a) of Figure 3 reports MNIST test error for kNN classifiers trained on the latent space of
the Gauss-VAE, a SB-VAE, and the proposed DLGMM. Note that none of these models had access
to labels during training. We see from the table that the DLGMM performs markedly better than the
Gauss-VAE—supporting our visual analysis above of the t-SNE projections—and slightly better than
the SB-VAE. Moreover, the DLGMM’s superior performance holds across all number of neighbors
tested (k = {3, 5, 10}).
Lastly, in Figure 3 (b) we report the (Monte Carlo) estimated marginal likelihood for the various
models on MNIST and Omniglot. The network architectures are given in parentheses: d denotes a
deterministic layer, s a stochastic layer, K× the number of mixture components, and t the truncation
level for the DP and SB models. We find that using a mixture latent space improves the likelihood
modestly for MNIST but not at all for Omniglot.

4 Conclusions

In this paper we extended the DLGM/VAE to mixture latent spaces and proposed solutions—such as
using a stick-breaking construction and the Kumaraswamy for the marginal distribution of the mixture
weights—to the complications with learning and inference in this class of deep generative model.
Furthermore, our innovations support multiple stochastic layers as well as infinite mixtures (with a
truncated variational approximation); however, the cost of marginalizing the decoder can become
prohibitive in these cases. We experimentally compared the DLGMM to the single Gaussian and
Stick-Breaking VAEs and found that, intuitively, the mixture latent space provides better clustering
into the data’s natural structure (such as MNIST digit style and class).
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