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Abstract

We propose a simple algorithm to train stochastic neural networks to draw samples
from given target distributions for probabilistic inference. Our method is based
on iteratively adjusting the neural network parameters so that the output changes
along a Stein variational gradient [1] that maximumly decreases the KL divergence
with the target distribution. Our method works for any target distribution specified
by their unnormalized density function, and can train any black-box architectures
that are differentiable in terms of the parameters we want to adapt. By allowing
to “learn to draw samples”, our method opens a host of applications. We present
two examples in this paper: 1) we propose an amortized MLE method for training
deep energy model, where a neural sampler is adaptively trained to approximate
the likelihood function. Our method mimics an adversarial game between the
deep energy model and the neural sampler, and obtains realistic-looking images
competitive with the state-of-the-art results. 2) by treating stochastic gradient
Langevin dynamics as a black-box sampler, we train it to automatically adjust its
learning rate to maximize its convergence speed, and get better performances than
the hand-designed learning rate schemes.

1 Introduction

Modern machine learning increasingly relies on highly complex probabilistic models to reason
about uncertainty. A key computational challenge is to develop efficient inference techniques to
approximate, or draw samples from complex distributions. Currently, most inference methods,
including MCMC and variational inference, are hand-designed by researchers or domain experts.
This makes it difficult to fully optimize the choice of different methods and their parameters, and
exploit the structures in the problems of interest in an automatic way. The hand-designed algorithm
can also be inefficient when it requires to make fast inference repeatedly on a large number of
different distributions with similar structures. This happens, for example, when we need to reason
about a number of observed datasets in settings like online learning, or need fast inference as inner
loops for other algorithms such as maximum likelihood training. Therefore, it is highly desirable
to develop more intelligent probabilistic inference systems that can adaptively improve its own
performance to fully optimize computational efficiency, and generalize to new tasks with similar
structures. Specifically, we study the following problem:

Problem 1. Given a distribution with density p(x) specified up to the normalization constant, and
a function fη(ξ) with parameter η and random input ξ, for which we only have assess to draws of
the random input ξ (without knowing its true distribution qξ), and the output values of fη(ξ) and its
derivative ∂ηfη(ξ) given η and ξ. We want to find an optimal parameter η so that the density of the
random output variable x = fη(ξ) with ξ ∼ qξ matches closely with the target density p(x).

Because we have no assumption on the structure of fη and the distribution of random input, we
can not directly calculate actual distribution of the output random variable x = fη(ξ); this makes



Given distribution Black-box neural sampler Samples
Figure 1: Our methods “learn to draw samples”, constructing black-box neural samplers for given distributions.
It allows us to automatize the hyper-parameter tuning of Bayesian inference, speed up the inference inner loops
of learning algorithms, and eventually replace hand-designed inference algorithms with more efficiently one that
is trained on past tasks and is improved adaptively over time.

it difficult to solve Problem 1 using the traditional variational inference (VI) methods. Recall that
traditional VI approximates p(x) using simple proposal distributions qη(x) indexed by parameter η,
and finds the optimal η by minimizing KL divergence KL(qη || p) = Eqη [log(qη/p)], which requires
to calculate the density qη(x) or its derivative (even when Monte Carlo gradient estimation and
reparameterization trick [2] are applied) that is not available by our assumption.

In fact, it is this requirement of calculating qη(x) that has been the major constraint for the designing of
state-of-the-art variational inference methods with rich approximation families; the recent successful
algorithms [e.g., 3–5, to name only a few] have to handcraft special variational families to ensure the
computational tractability of qη(x) and simultaneously obtain high approximation accuracy, which
require substantial mathematical insights and research effects. One exception is a very recent paper
[6] that avoids calculating qη(x) using an idea related to Stein discrepancy [7–10]. New methods that
do not require to explicitly calculate qη(x) will significantly simplify the design and applications of
VI methods, allowing practical users to focus more on choosing proposals that work best with their
specific tasks. We will use the term wild variational inference to refer to new variants of variational
methods that requires no tractability qη(x), to distinguish with the black-box variational inference
[11] which refers to methods that work for generic target distributions p(x) without significant
model-by-model consideration (but still require to calculate the proposal density qη(x)).

A similar problem also appears in importance sampling (IS), where it requires to calculate the IS
proposal density q(x) in order to calculate the importance weight w(x) = p(x)/q(x). However, there
exist methods that use no explicit information of q(x). While, seemingly counter-intuitively, giving
better asymptotic variance or converge rates than the typical IS that uses the proposal information
[e.g., 12–15]. Discussions on this phenomenon dates back to O’Hagan [16], who argued that “Monte
Carlo (that uses the proposal information) is fundamentally unsound” for violating the Likelihood
Principle, and developed Bayesian Monte Carlo [17] as an example that uses no information on
q(x), yet gives better convergence rate than the typical Monte Carlo O(n−1/2) rate [13]. Despite the
substantial difference between IS and VI, these results intuitively suggest the possibility of developing
efficient variational inference without calculating q(x) explicitly.

2 Amortized SVGD

We approach Problem 1 by iteratively adjusting the network parameter η to make the network outputs
mimic the dynamics of a recent Stein variational gradient descent (SVGD) method [1]. SVGD is
a deterministic sampling method that iteratively updates a set of particles {xi}ni=1 to approximate
the target distribution p(x) in the sense that

∑
i f(xi)/n ≈ Epf for general test functions f . Each

iteration of SVGD updates the current particles {xi}ni=1 with a gradient-like update

x′i = xi + ε∆xi,

where ε is a small step size, and ∆xi is an optimal perturbation direction chosen to maximumly
decrease the KL divergence between the distribution of the particles and the target distribution. The
derivation in Liu and Wang [1] shows that ∆xi can be chosen to be

∆xi = Êx∼{xi}ni=1
[∇ log p(x)k(x, xi) +∇xk(x, xi)], (1)

where Êx∼{xi}ni=1
denotes the empirical averaging on the current particles {xi}ni=1. The two terms

in ∆xi play two different roles: the term with the gradient∇x log p(x) drives the particles towards
the high probability regions of p(x), while the term with ∇xk(x, xi) serves as a repulsive force to
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Algorithm 1 Amortized SVGD or KSD for Problem 1
for iteration t do

1. Draw random {ξi}ni=1, calculate xi = fη(ξi), and the Stein variational gradient ∆xi in (1).
2. Update parameter η using (2) (for amortized SVGD), or (3) (for amortized KSD).

end for

encourage diversity; to see this, consider a stationary kernel k(x, x′) = k(x− x′), then the second
term reduces to Êx∇xk(x, xi) = −Êx∇xik(x, xi), which can be treated as the negative gradient for
minimizing the average similarity Êxk(x, xi) in terms of xi.

Note that ∆xi reduces to the typical gradient ∇x log p(xi) when there is only one single particle
(n = 1), in which case SVGD reduces to the standard gradient ascent for maximizing log p(x) (i.e.,
maximum a posteriori (MAP)).

We propose to solve Problem 1 by “amortizing” SVGD to make the output of network fη(ξ) mimic
the SVGD dynamics. This is done by iteratively adjusting the network parameter η such that the
network outputs xi = fη(ξi), i = 1, . . . , n, change along with the optimal direction ∆xi given by
SVGD. To be specific, we should update η via

η ← arg min
η

n∑
i=1

||fη(ξi)− xi − ε∆xi||22.

If we approximately solve this optimization with a single step of gradient update, we get a simpler
update of η:

η ← η + ε
∑
i

∂ηfη(ξi)∆xi, (2)

which can be intuitively interpreted as a form of chain rule that back-propagates the SVGD gradient
to the network parameter η. In fact, when we have only one particle, (2) reduces to the standard
gradient ascent for maxη log p(fη(ξ)), in which fη is trained to “learn to optimize” [e.g., 18], instead
of “learn to sample” p(x). See Algorithm 1 for our full algorithm.

3 Amortized KSD

Amortized SVGD can be treated as minimizing the KL divergence objective, but avoids the need for
explicitly evaluating q(x) with the help of SVGD. Here we provide an alternative method based on
minimizing a different kernelized Stein discrepancy (KSD) objective, which, thanks to its special
form, can be minimized using typical gradient descent without needing to estimate q(x) explicitly.

For two positive differentiable densities p and q on Rd, their KSD D(q || p) is defined via

D2(q || p) = Ex,x′∼q[κp(x, x
′)],

where x, x′ are i.i.d. draws from q and κp(x, x′) is a positive definite kernel related to p via

κp(x, x
′) = ∇x log p(x)∇x log p(x′)k(x, x′)+∇x log p(x)∇x′k(x, x′)+

∇x log p(x′)∇xk(x, x′) +∇x · (∇x′k(x, x′)).

It can be shown that D(q || p) = 0 if and only if p = q under certain regularity conditions [1, 10].

Taking qη to be the density of the random output x = fη(ξ) when ξ ∼ qξ, then we want to find η to
minimize D(qη || p). With i.i.d. drawing ξi from qξ , we can approximate D2(qη || p) unbiasedly with
a U-statistics:

D̂2(qη || p) =
1

n(n− 1)

∑
i 6=j

κp(fη(ξi), fη(ξj)),

for which a standard gradient descent can be derived for optimizing η:

η ← η − ε 2

n(n− 1)

∑
i 6=j

∂ηfη(ξi)∇xiκp(xi, xj), where xi = fη(ξi). (3)
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Algorithm 2 Amortized MLE as Generative Adversarial Learning
Goal: MLE training for energy model p(x|θ) = exp(−φ(x, θ)− Φ(θ)).
Initialize η and θ.
for iteration t do

Updating η: Draw ξi ∼ qξ, xi = fη(ξi); update η using (2) with p(x) = p(x|θ). Repeat
several times when needed.
Updating θ: Draw a mini-batch of observed data {xi,obs}, and simulated data xi = fη(ξi),
update θ by

θ ← θ − Êobs[∇θφ(x, θ)] + Êη[∇θφ(x, θ)].

end for

This allows us to solve Problem 1 for wild variational inference by directly minimizing η with
standard (stochastic) gradient descent.

However, (3) does not have the nice property of reducing to “learning to optimize” like (2). (3) is
also less natural because (3) involves the Hessian matrix ∇2

x log p(x). This makes it less convenient
to implement (3), although it can be made easy with automatic differentiation tools. We also find
in practice that (3) turns to be unstable sometimes, possibly because D(q || p) forms a weaker
discrepancy measure than KL divergence. More studies are needed to understand and improve
amortized KSD.

4 Applications

Our method allows us to design efficient approximate sampling methods adaptively and automatically,
and enables a host of novel applications. In this paper, we exploit two particular examples: (1)
amortized MLE for training deep generative models, and (2) automatic hyper-parameter tuning for
Bayesian inference.

4.1 Amortized MLE for Generative Adversarial Training

Maximum likelihood estimator (MLE) provides a fundamental approach for learning probabilistic
models from data, but can be computationally prohibitive on distributions for which drawing samples
or computing likelihood is intractable due to the normalization constant. Traditional methods such as
MCMC-MLE uses hand-designed methods (e.g., MCMC) to approximate the intractable term but do
not work efficiently in practice. We propose to adaptively train a generative neural network to draw
samples from the distribution, which not only provides computational advantage, and also allow us
to generate realistic-looking images competitive with, or better than the state-of-the-art generative
adversarial networks (GAN) [19, 20] (see Figure 2-6).

To be specific, denote by {xi,obs} a set of observed data. We consider the maximum likelihood
training of energy-based models of form

p(x|θ) ∝ 1

Z(θ)
exp(−φ(x, θ)), Z(θ) =

∫
exp(−φ(x, θ))dx,

where φ(x; θ) is an energy function for x indexed by parameter θ and Z(θ) is the normalization
constant. The maximum likelihood estimator of θ is based on maximizing the log likelihood function,

L(θ) =
1

n

n∑
i=1

log p(xi,obs|θ),

whose gradient is
∇θL(θ) = −Êobs[∂θφ(x; θ)] + Eθ[∂θφ(x; θ)],

where Êobs[·] and Eθ[·] denote the empirical averaging on the observed data {xi,obs} and the expecta-
tion under model p(x|θ). The key computational difficulty is to approximate the model averaging
Eθ[·]. To address this problem, we use a generative neural network x = fη(ξ) trained by Algorithm 1
to approximately sample from p(x|θ),

∇̂θL(θ) = −Êobs[∂θφ(x; θ)] + Êη[∂θφ(x; θ)],
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DCGAN SteinGAN 

Figure 2: Results on CelebA. Upper: Images generated by DCGAN and our SteinGAN. Lower:
images generated by SteinGAN when performing a random walk ξ ← ξ + 0.01×Uniform([−1, 1])
on the random input ξ.

where Êη denotes the empirical averaging on {xi} where xi = fη(ξi), {ξi} ∼ qξ . As θ is updated by
gradient ascent, η is successively updated via Algorithm 1 to follow p(x|θ). See Algorithm 2.

We call our method SteinGAN, because it can be intuitively interpreted as an adversarial game between
the generative network fη and the energy model p(x|θ) which serves as a discriminator: The MLE
gradient update of pη effectively decreases the energy of the training data and increases the energy of
the simulated data from fη , while the SVGD update of fη decreases the energy of simulated data to
fit better with p(x|θ). Meanwhile, our procedure is still a principled maximum likelihood procedure
and can be more stable than the original GAN [19] that attends to find a Nash equilibrium. Compared
with the traditional MCMC-MLE methods, we amortize the sampler as we train, which gives much
faster speed and provides a high quality generator to generate realistic images simultaneously.

We tested our SteinGAN on four datasets, MNIST, CIFAR10, CelebA [21], and Large-scale Scene
Understanding (LSUN)[22], on which we find our method tends to generate realistic-looking images
competitive with DCGAN [20] (see Figure 2-Figure 4). In particular, we find we generate better
images than DCGAN on CelebA (Figure 2), and our simulated CIFAR10 images achieves better
testing classification accuracy when used as training data (see Figure 4). See Appendix A for more
information. Our code is available at https://github.com/DartML/SteinGAN.

4.2 Hyper-parameter Optimization for Bayesian Inference

By treating the existing MCMC or variational methods as black-box procedures, we can apply our
method to adaptively tune the hyper-parameters in these methods. This allows us to fully optimize
the potential of existing Bayesian inference methods and also decreases the need of hyper-parameter
tuning by human experts. As an example, we applied our method to adaptively learn the optimal
learning rate for stochastic gradient Langevin dynamics (SGLD) [23], and find that significantly
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outperforms hand-designed learning rates such as Adagrad [24] and RMSprop (See Figure 5). See
Appendix B for more information.

5 Conclusion

We provide efficient algorithms for training neural samplers, together with a new SteinGAN method
for generative adversarial training, and a hyperparameter optimization method for stochastic gradient
Langevin dynamics. Future directions involve more applications and theoretical understandings for
training neural samplers.
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A Empirical Results of SteinGAN

In order to generate realistic-looking images, we define our energy model based on an autoencoder:

p(x|θ) ∝ exp(−||x−D(E(x))||), (4)

where x denotes the image. This choice is motivated by Energy-based GAN [25] in which the
autoencoder loss is used as a discriminator but without a probabilistic interpretation. We assume fη(ξ)
to be neural networks whose input ξ is a 100-dimensional random vector drawn by Uniform([−1, 1]).
The positive definite kernel is defined by the RBF kernel on hidden layer of the autoencoder, that is,

k(x, x′) = exp(− 1

h2
||E(x)− E(x′)||2).

The kernel can act as a repulsive force to enforce diversity on the generated samples via the term
∇xk(x, x′) in (1). This is similar to the heuristic “repelling regularizer” in [25], but derived in a
principled way. We take the bandwidth to be h = 0.5×med, where med is the median of distances
between E(x) on the observed images {xi,obs}i.
For MNIST and CIFAR-10, each image x also has a discrete label y, and we train a joint model on
(x, y):

p(x, y|θ) ∝ exp{−||x−D(E(x))|| −max[m, σ(y, E(x))]}, (5)

where σ(·, ·) is the cross entropy loss function of a fully connected output layer. In this case, the
generative network will first draw a y randomly according to the empirical counts in the dataset, and
pass it into a neural network together with a 100 dimensional random vector to generate image x.
This model allows us to generate images for each category.

We refer to Wang and Liu [26] for more details and discussions about SteinGAN.

DCGAN SteinGAN

Figure 3: Images generated by DCGAN and our SteinGAN on LSUN.

B Empirical Results for Hyper-parameter Optimization of Bayesian
Inference

We applied our method to adaptively learn the optimal learning rate for stochastic gradient Langevin
dynamics (SGLD) [23]. Denote by D = {zj}Nj=1 an observed dataset drawn i.i.d. by p(zi|x), and x
is a random parameter with prior p0(x). The posterior distribution of x is

p(x|D) ∝ p0(x)

N∏
j=1

p(zj |x).

SGLD draw approximate sample from p(x|D) via iterative update of form

xt+1 ← xt + ηt · [log p0(xt) +
N

|Mt|
∑
j∈Mt

∇x log p(Dj |xt)] +
√

2ηt · ξt,
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Inception Score
Real Training Set 500 Duplicate DCGAN SteinGAN

Model Trained on ImageNet 11.237 11.100 6.581 6.351
Model Trained on CIFAR-10 9.848 9.807 7.368 7.428

Testing Accuracy
Real Training Set 500 Duplicate DCGAN SteinGAN

92.58 % 44.96 % 44.78 % 63.81 %

Figure 4: Results on CIFAR-10. “500 Duplicate” denotes 500 images randomly subsampled from the
training set, each duplicated 100 times. Upper: images simulated by DCGAN and SteinGAN (based
on joint model (5)) conditional on each category. Middle: inception scores for samples generated by
various methods (all with 50,000 images) on inception models trained on ImageNet and CIFAR-10,
respectively. Lower: testing accuracy on real testing set when using 50,000 simulated images to train
ResNets for classification. SteinGAN achieves higher testing accuracy than DCGAN.

where ξt is a standard Gaussian random vector of the same size as x, and Mt is a random mini-batch
selected at t-th iteration (we use a mini-batch size of 100), and ηt denotes a (vector) stepsize at t-th
iteration. Consider running SGLD for T = 100 iterations, we can treat xT as the output of a T -layer
neural network parametrized the collection of stepsizes η = {ηt}Tt=1, with x0 and {Mt, ξt}Tt=1 as the
random inputs. This allows us to apply amortized SVGD or KSD to adaptively estimate the optimal
stepsize η.

We test our method with Bayesian logistic regression on the Covertype dataset. To demonstrate that
our estimated learning rate can work well on new datasets never seen by the algorithm. We partition
the dataset into mini-datasets of size 50, 000, and use 80% of them for training and 20% for testing.
We adapt our amortized SVGD/KSD to train on the whole population of training mini-datasets by
randomly selecting a mini-dataset at each iteration of Algorithm 1. Figure 5 reports the test accuracy
when we apply the estimated step sizes on the 20% mini-datasets held for testing. We find that our
method outperforms all the hand-designed learning rates, including Adagrad [24] and Rmsprop. We
find that amortized KSD does not work as well as amortized SVGD, likely because KSD is a weaker
discrepancy measure compared with KL divergence.

We refer to Liu and Feng [27] for more details and discussions about wild variational inference using
Stein discrepancy.
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Figure 5: (a) The testing accuracy of the first T = 100 iterations with learned and hand-designed step
sizes. We find that our method outperforms all the hand-designed learning rates, as well as amortized
KSD. (b)-(c) Examples of step sizes learned by amortized SVGD (for two different dimensions of x).

Figure 6: More images generated by SteinGAN on CelebA.
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