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1 Introduction

Distributed representations induced from large unlabeled text collections have had a large impact
on many natural language processing (NLP) applications, providing an effective and simple way
of dealing with data sparsity. Word embedding methods [[1} [2} 3| 4] typically represent words as
vectors in a low-dimensional space. In contrast, we encode them as probability densities. Intuitively,
the densities will represent the distributions over possible ‘meanings’ of the word. Representing a
word as a distribution has many attractive properties. For example, this lets us encode generality of
terms (e.g., ‘animal’ is a hypernym of ‘dog’), characterize uncertainty about their meaning (e.g., a
proper noun, such as ’John’, encodes little about the person it refers to) or represent polysemy (e.g.,
’tip” may refer to a gratuity or a sharp edge of an object). Capturing entailment (e.g., ‘run’ entails
’move’) is especially important as it needs to be explicitly or implicitly accounted for in many NLP
applications (e.g., question answering or summarization). Intuitively, distributions provide a natural
way of encoding entailment: the entailment decision can be made by testing the level sets of the
distributions for ‘soft inclusion’(e.g., using the KL divergence [J3]]).

2 Model and Inference

for each position n in the collection:
2"~ N (2; phon, 02,0 1) [draw a vector for word w™]
fork=1to M + M’ [go over context words]
th ~ Bernoulli(a(ucTE z™)) [decide if a true context or not]
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Figure 1: Graphical models for skip-gram (a) and BSG (b); the generative story for BSG (c)

We extend the negative sampling version of the skip-gram model (SG) [3]. As with SG, for each word
in the corpus w", we are given a vector of context words ¢ = (cf, ..., c}y;, 5 ), Where M words
originate from the sliding window around w™ and the remaining M’ words are sampled randomly
(i.e. negative samples). The model is trained to discriminate between true and negative samples, with
the origin of each context word recorded in the binary vector t" = (7, ..., t%,, ), ti = —1 and
+1 for negative and true samples, respectively. The graphical model for the standard SG model is
shown in Figure

Unlike SG, our proposed model (Bayesian skip-gram, BSG) represents words as probability dis-
tributions by introducing a latent variable 2" € R¢ for each context window. The vector 2" is
drawn from a parameterized word-specific prior distribution p(2"|w™) = N (2; ttn, 02.1). This
data-dependent prior then serves as an embedding of that word. Gaussian priors are not very suitable
for modeling polysemy, we leave more sophisticated priors for future work. Our generative story and
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the corresponding graphical model are shown in Figure and|1b); ucp € R is an embedding of
context word ¢} and o(+) stands for the logistic sigmoid function.

Though our model is similar to the standard Bayesian matrix factorization (BMF) model [[6], there
is a significant difference. Unlike BSG, BMF assumes that the same latent vector is used across
all contexts of the word in a text collection. So the posteriors will encode uncertainty about the
representation (e.g., the variance will be high if the word is infrequent) rather than the generality
and degree of polysemy of the term (i.e. whether it is used in diverging contexts). In contract, by
drawing a word vector for each sliding window in a collection, we encode the intuition that word
meaning varies across contexts. Our model can be regarded as a form of ‘multiple’ Bayesian matrix
factorization [7], where each sliding window is factorized individually but priors for words are shared
across all the windows.

Despite the fact that proposed model can be formulated in a *classic’ variational inference settings,
likelihood potentials have Bernoulli distributions and are no longer conjugate to Gaussian distribution.
We can use neither closed-form solutions [8] nor simple VBMF schemas [9]]. Instead, we rely on the
variational autoencoding framework [[10], resulting in an efficient embedding method which is only
marginally slower than a comparable implementation of the standard Skip-gram model [3]] (see Table
[I). The variational lower bound on the marginal likelihood of datapoint n can be written as:

IOgPO(tn|wnvcn) > Eq¢(z"\w",cn,t") [pe(tn|zn7 Cn)} — Dk (Q¢(2n|wnv Cnvtn)||p0(zn|wn)) (1)

The KL-divergence can be integrated analytically, and we use the reparameterization trick [10] to
obtain a low-variance gradient estimator for the encoder parameters. The approximate posterior
distribution is a multivariate Gaussian with a diagonal covariance gy (2" |w™, ¢, t") = N (z; u, 0°1)

where p = Wik + by, log 0% = Wah +ba, h = f(vun + 5m by

another) word embeddings, Wy, Wy € RdXd', b1, by € R% are parameters of the affine transformation,
and f is an activation function.

t};vcz). vw € RY are (yet

3 Experiments and Discussion

There has been very little work on embedding words as distributions, or, in general, on unsupervised
learning of embeddings specifically suited for entailment. One notable exception is Gaussian
embeddings [5)]. Similarly to us, they do not assume having one latent vector for each word. Unlike our
generative modeling approach, they directly minimize similarities between densities corresponding
to co-occurring words. Prior work on Bayesian modeling of embeddings has been limited to using
the BMF formulation [L1}12}|13]]. In order to assess the quality of induced word representations, we
compare them to Gaussian embeddings on the standard textual entailment benchmark [[14]. Though
our focus is on learning representations suited for capturing lexical entailment, we also test them on
similarity [15] and analogical reasoning benchmarks [3]]. As we do not need covariance information
for these two benchmarks, we use here SG as another baseline.

The Gaussian embeddings were estimated with diagonal covariance and KL as the energy function.
Sub-tests of the similarity benchmark were combined into one file and the Spearman’s rank correlation
coefficient has been computed for all pairs at once. Finally, entailment evaluation has been performed
in the same way as in Vilnis and McCallum [5]]. We used the same hyperparameter selection procedure
for all three models. For training, we used the one billion words corpus [16]. Larger and more varied
collections are known to yield better results, we leave this for future work.

Model Entailment (F1) | Similarity(p) | Semantic acc.(%) | Syntactic acc.(%) | Hours
Gauss [9] | 0.69 0.366 32.2 38.0 3.5
SG [3] - 0.352 53.5 51.5 4.5
BSG 0.73 0.357 52.0 41.1 5.3

Table 1: Evaluation results with 100 dimensional word embeddings.

The results of training different word-embeddings are presented in Table[I] As one can see, BSG out-
performs Gaussian embeddings on the entailment benchmark. In general, BSG embeddings perform
competitively on all benchmarks, including significant improvements over Gaussian embeddings
on the semantic analogical reasoning tasks. However, BSG embeddings slightly under-performs on
the similarity benchmark in comparison to Gaussian embeddings, and on analogical reasoning in
comparison to SG. It is worth mentioning that words are embedded as probability distributions in



Euclidean space. Meanwhile, a probability of being a word from the sliding window is defined by
a dot product. In this setup variance of the probability of being a word from the true context can
be inconsistent with word representation variance. Hence model could be improved by removing
this mismatch. The results are promising, and we expect further improvements with more powerful
inference networks and priors.
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