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Abstract

We evaluate the uncertainty quality in neural networks using anomaly detection.
We extract uncertainty measures (e.g. entropy) from the predictions of candidate
models, use those measures as features for an anomaly detector, and gauge how
well the detector differentiates known from unknown classes. We assign higher
uncertainty quality to candidate models that lead to better detectors. We also pro-
pose a novel method for sampling a variational approximation of a Bayesian neural
network, called One-Sample Bayesian Approximation (OSBA). We experiment on
two datasets, MNIST and CIFAR10. We compare the following candidate neural
network models: Maximum Likelihood, Bayesian Dropout, OSBA, and — for
MNIST — the standard variational approximation. We show that Bayesian Dropout
and OSBA provide better uncertainty information than Maximum Likelihood, and
are essentially equivalent to the standard variational approximation, but much
faster.

1 Introduction

While current Deep Learning focuses on point estimates, many real-world applications require a full
range of uncertainty. Reliable confidence on the prediction might be as useful as the prediction itself.
The debate over the dangers of overconfident machine learning has reached the headlines of mass
media [1, 2]. Indeed, if our models are to drive cars, diagnose medical conditions, and even analyze
the risk of criminal recidivism, unreliable confidence appraisal may have dire consequences.

Traditional Deep Learning trains by maximum likelihood — needing aggressive regularization to
avoid overfitting — and only provides point estimates, with limited uncertainty information. If the
model outputs a vector of probabilities (as a softmax classifier does), we can quantify its uncertainty
using the entropy of the prediction. However, the model can predict with high confidence for samples
way outside the distribution seen during training [3]. Frequentist mitigations, like the bootstrap [4],
do not scale well for deep models.

True Bayesian models infer the posterior distribution over all unknown factors, but their computational
demands are often prohibitive. On the other hand, we may profitably reinterpret under a Bayesian
perspective some of the ad hoc regularizations used in ordinary Deep Learning (e.g., dropout [5, 6],
early stopping [7], or weight decay [8, 9]). Gal and Ghahramani [5] show that multiple dropout
forward passes in test time are equivalent to a Bayesian prediction (marginalized over the parameters’
posteriors) given a particular variational approximation. A more direct (and expensive) approach
variationally approximates the posterior of each weight [9].
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2 One-Sample Bayesian Approximation (OSBA)

Here we propose a novel Bayesian approach for neural networks, similar to the variational approxi-
mation of Blundell et al. [9], but much cheaper computationally. We call that approach One-Sample
Bayesian Approximation (OSBA), and investigate whether it achieves better quality of uncertainty
information than traditional maximum likelihood.

We use exactly the same approach presented by Blundell et al. ([9], section 3.2), but instead of
sampling the weight matrices for each training example, we sample the matrices only once per
mini-batch, and use the same weights for all examples in that mini-batch. That approach leads to
the same expected gradient, trading off higher variance for computational efficiency (about 10 times
faster with a mini-batch of 100).

3 Uncertainty Quality

To evaluate the quality of uncertainty information, we employ anomaly detection: deciding whether or
not a test sample belongs to the classes seen during training. More concretely, we pick a classification
problem, exclude some classes from training, and use them to evaluate how much insight a candidate
model has about its own classification confidence. We expect Bayesian neural networks to express
such uncertainty well, to the point we can use it to decide whether a sample belongs or not to the
known classes. Thus, we employ the AUC of the anomaly detector as a relative measure of the quality
of the uncertainty information output by candidate models (Figure 1).
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Figure 1: Uncertainty quality evaluation using an anomaly detection task. This is the experimental
pipeline we follow to compare uncertainty quality among candidate models. (1) We train a candidate
probabilistic classifier for the original task (MNIST or CIFAR10). (2) We extract uncertainty
information from the classifier prediction. (3) We train a linear anomaly detector using those
uncertainty measures as features. (4) We calculate the AUC of the anomaly detector. Higher detector
AUCs indicate that a candidate model provides better uncertainty information.

We contrast two experimental protocols. In the Blind Protocol, we separate the classes into two
groups (In and Out); train the candidate neural network using only the In classes; and then train —
over the In vs. Out classes — a separate anomaly detector using the uncertainty extracted from the
prediction of the candidate network. In the Calibrated Protocol, we separate the classes into three
groups (In, Unknown, and Out); train the candidate network using the In classes with the loss function
using the correct labels, and the Unknown classes with the loss function using the equiprobable
prediction vector; and then train — over the In vs. Out classes — a separate anomaly detector using
the same features as before. The test set used to compute the AUC of the anomaly task excludes
(obviously) all samples used to train the anomaly detector, and (perhaps less obviously) all samples
used to train the candidate neural network.

4 Methodology

We use MNIST [10] and CIFAR10 [11] datasets. For MNIST, the candidate networks have a two-
layered fully-connected architecture with 512 neurons each, with dropout of 0.5 applied after each
hidden layer. For CIFAR10, the candidate networks have two convolutional blocks (with dropout of
0.25 after each of them), followed by a fully-connected layer with 512 neurons (with dropout of 0.5).
We optimize with ADAM [12], and limit each training procedure to 100 epochs for MNIST, and 200

2



epochs for CIFAR10. For each dataset we choose 4 In classes, 4 Out classes, and (for the Calibrated
Protocol) 2 Unknown classes (Table 1). We randomize 20 combinations of In×Out[×Unknown]
classes, with 5 repetitions each, totaling 100 replications.

Table 1: Possible combination for In, Out and Unknown classes, showing one sample per class.
MNIST’s classes have crisp semantic separation; CIFAR10’s have considerable overlap due to
specialization (e.g., animals) or to background (e.g., sky, lawn, pavement). Such overlap might reduce
the accuracy of anomaly detection as a measure of uncertainty quality.

Dataset In Out Unknown

MNIST

CIFAR

As methods, we evaluate the usual baseline of Maximum Likelihood (ML), a Bayesian posterior
estimated from dropout [5, 13] (BD), our approximation for the standard variational Bayesian neural
networks using one sample per mini-batch (OSBA), and, for MNIST, we also evaluate the standard
variational approximation [9] (SV).

The features for anomaly detection are uncertainty measures extracted from probabilistic predictions.
For simplicity, the detector is a linear logistic classifier, with regularization parameter set by stratified
cross-validation [14]. For ML, only the vector of predicted probabilities is available, and thus
we employ as feature the entropy — the most theoretically sound measure of uncertainty — over
that vector. All Bayesian methods provide extra information; we use as feature vector the average
and standard deviation of the entropy of the decision vector over 100 network prediction samples
(estimating the expectation and variance of the entropy), the entropy of the average decision vector
over those same samples (entropy of estimated expected predictions), and the average (over classes)
of the standard deviations (over samples) of the predictions for each class.

4.1 Bayesian ANOVA

We analyze the results using Bayesian ANOVA [15], with a separate mean for each protocol (Blind
vs. Calibrated). That is equivalent to a two-way ANOVA without interactions, where the global mean
and experimental protocol factors are fused together (for interpretability). The methods (ML, BD,
OSBA) are the factors of variation. We constrain the sum of the effects to be zero, for identifiability.
The response variable is the logit-AUC of the anomaly detector. For easier interpretation, the results
are transformed back into the AUC domain via the expit function. We use weakly informative priors.
The following model reflects those choices:

model = {ML,BD,OSBA}
protocol = {Blind,Calibrated}

logit(AUCprotocol,model) ∼ N (µprotocol + θmodel, σ)

µprotocol ∼ N (0, 10)

θmodel ∼ N (0, σtheta)

σtheta ∼ Half-Cauchy(0, 10)
σ ∼ Half-Cauchy(0, 10)∑

i∈model

θi = 0

We implement the model using Stan [16], and infer the posteriors of the unknown parameters using
the NUTS algorithm [17]. To ensure proper convergence, we use 4 chains with 100K steps, including
a 10K burn-in, and a thinning factor of 5. From Kruschke’s suggestion [15], we present both the
distribution of the marginal effects, and the distribution of the differences between effects.1

1Code for models, experiments, and analyses at https://github.com/ramon-oliveira/deepstats.
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5 Results

Figure 2: MNIST dataset. Each cell plots the distribution of the influence of the factor shown in the
label above it, marginalized over all other factors. We highlight means (expected influence), and
95% Highest Posterior Density intervals (HPD, black bars). On the topmost two rows, we consider
the factors themselves (marginal effect), and on the other rows, the differences between effects. We
consider the differences significant if the HPD does not contain 0.0 (green bar). The domain is the
AUC of the anomaly detector.

We show the Bayesian ANOVA results in Figures 2 and 3 (for reference, we also show the raw
distributions of the AUCs, as boxplots in Figures 4 and 5). Calibration with the auxiliary Unknown
classes has a large effect, larger than choosing among uncertainty methods. Calibration, however, is
not realistic for many applications, due to the artificial constraint of picking well-formatted Unknown
classes. On the well-controlled scenario provided by MNIST, Bayesian methods give significantly
better uncertainty information than ML. On MNIST, all Bayesian methods outperform ML, and their
effects do not appear significantly different from each other. On CIFAR10, however, perfect semantic
separation between classes is questionable (Table 1), and the performance differences disappear: BD
slightly outperforms ML, and OSBA slightly outperforms ML, but none of the differences appear
significant.

Table 2 shows the accuracies of all candidate models. Note that competing candidate models have
very similar performance: any gains in anomaly detection rather come from enhanced probabilistic
information than from increased accuracy.
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Figure 3: CIFAR10 dataset. Same information and interpretation as Figure 2 above.

Table 2: Test accuracy on the original classification task. We show the mean accuracy, with the
standard deviation in parentheses, averaged over 100 different replications. Competing candidate
models have similar accuracies, showing that enhanced uncertainty quality comes from enhanced
probabilistic information, not from extra accuracy. Note that OSBA and SV have the same accuracy,
but the latter is ten times slower.

Dataset Protocol ML BD OSBA SV
MNIST Calibrated 0.990 (0.002) 0.991 (0.002) 0.991 (0.002) 0.991 (0.002)
MNIST Blind 0.992 (0.002) 0.992 (0.002) 0.991 (0.002) 0.991 (0.002)
CIFAR10 Calibrated 0.878 (0.036) 0.896 (0.033) 0.884 (0.037) —
CIFAR10 Blind 0.905 (0.029) 0.908 (0.028) 0.896 (0.032) —

6 Conclusion

We formalized how to ascertain uncertainty quality of neural networks by using anomaly detection.
We contrasted the usual maximum likelihood networks to Bayesian alternatives. Bayesian networks
outperformed the frequentist network in all cases.

We also proposed a novel way to sample from a variational approximation of a Bayesian neural
network, OSBA, which is much faster than the standard sampling procedure, but still retains the same
uncertainty quality. OSBA is 10× faster than SV; in our experiments, we observed relative training
computational costs of 1× (ML) to 1× (BD) to 3× (OSBA) to 30× (SV).

We believe, thus, that techniques like BD and OSBA deserve further investigation in more contexts.
Finding a general measure of uncertainty quality is, however, still a challenge. Our experiments
suggest that anomaly detection only gives good uncertainty measures for well-separated classes, like
MNIST’s; for uncontrolled datasets like CIFAR10 (or ImageNet), we need a measure that tolerates a
degree of semantic intersection between the classes.

As future work, we intend to explore other forms of uncertainty quality evaluation, and to test OSBA
in more varied settings.
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Figure 4: Distributions of the AUCs on MNIST for all combinations of probabilistic approach ×
experimental protocol. Each boxplot represents 100 replications, obtained by picking at random the
In, Out, and (for the calibrated protocol) Unknown classes.

Figure 5: Distribution of the AUCs on CIFAR10, obtained the same way as Figure 4 above.
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