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Abstract

Even though active learning forms an important pillar of machine learning, deep
learning tools are not prevalent within it. Deep learning poses several difficulties
when used in an active learning setting. First, we have to handle small amounts
of data. Recent advances in deep learning, on the other hand, are notorious for
their dependence on large amounts of data. Second, many acquisition functions
rely on model uncertainty. In deep learning on the other hand we rarely represent
such model uncertainty. Relying on Bayesian approaches to deep learning, in
this paper we combine recent advances in Bayesian deep learning into the active
learning framework in a practical way. We develop an active learning framework
for high dimensional data, a task which has been extremely challenging so far
with very sparse existing literature. Taking advantage of specialised models such
as Bayesian convolutional neural networks, we demonstrate our active learning
techniques with image data, obtaining significant improvement on existing active
learning approaches.

1 Introduction

A big challenge in many applications is obtaining labelled data. This can be a long and laborious
process, which often makes the development of an automated system uneconomical. A framework
where a system could learn from small amounts of data, and choose by itself what data it would
like the user to label, would make machine learning applicable to a wider class of problems. Such
frameworks for learning are referred to as active learning [1] (also known as “experiment design”
in the statistics literature), and have been used successfully in fields such as medical diagnosis,
microbiology, and manufacturing [2]. In active learning a model is trained on a small amount of data
(the initial training set), and an acquisition function (often based on the model’s uncertainty) decides
what data points to ask an external oracle for a label. The acquisition function selects one or more
points from a pool of unlabelled data points, with the pool points lying outside of the training set. An
oracle (often a human expert) labels the selected data points, these are added to the training set, and a
new model is trained on the updated training set. This process is then repeated, with the training set
increasing in size over time.

Even though existing techniques for active learning have proven themselves useful in a variety of
tasks, a major remaining challenge in active learning is its lack of scalability to high-dimensional
data [2]. This data appears often in image form, with a physician classifying MRI scans to diagnose
Alzheimer’s for example [3], or an expert clinician diagnosing skin cancer from dermoscopic lesion
images. To perform active learning a model has to be able to learn from small amounts of data and
represent its uncertainty over unseen data. This severely restricts the class of models that can be used
within the active learning framework. As a result most approaches to active learning have focused
on low dimensional problems [2, 4], with only a handful of exceptions [5–7] relying on kernel or
graph-based approaches.

In recent years, with the increased availability of data in some domains, attention within the machine
learning community has shifted from small data problems to big data problems [8–11]. And with the
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increased interest in big data problems, new tools were developed and existing tools were refined
for handling high dimensional data within such regimes. Deep learning, and convolutional neural
networks (CNNs) [12, 13] in particular, are an example of such tools. Originally developed in 1989
to parse handwritten zip codes, these tools have flourished and were adapted to a point where a CNN
is able to beat a human on the task of object recognition (given enough training data) [14]. New
techniques such as dropout [15, 16] are used extensively to regularise these huge models, which
often contain millions of parameters [17]. But even though active learning forms an important pillar
of machine learning, deep learning tools are not prevalent within it. Deep learning poses several
difficulties when used in an active learning setting. First, we have to handle small amounts of data.
Recent advances in deep learning, on the other hand, are notorious for their dependence on large
amounts of data [9]. Second, many acquisition functions rely on model uncertainty. In deep learning
on the other hand we rarely represent such model uncertainty.

Relying on Bayesian approaches to deep learning, in this paper we combine recent advances in
Bayesian deep learning into the active learning framework in a practical way. We develop an active
learning framework for high dimensional data, a task which has been extremely challenging so far
with very sparse existing literature from the past 15 years [5, 18, 6, 7]. Taking advantage of specialised
models such as Bayesian convolutional neural networks (BCNNs) [19, 20], we demonstrate our active
learning techniques with image data. Using a small model our system is able to achieve 5% test error
on MNIST with only 295 labelled images without relying on unlabelled data (in comparison, 835
labelled images are needed to achieve 5% test error using random sampling – requiring an expert to
label more than twice as much images to achieve the same accuracy), and achieves 1.64% test error
with 1000 labelled images. This is in comparison to 2.40% test error of DGN [21] or 1.53% test error
of the Ladder Network Γ-model [22], both semi-supervised learning techniques which additionally
use the entire unlabelled training set.

2 Related Research

Past attempts at active learning of image data have concentrated on kernel based methods. Using
ideas from previous research in active learning of low dimensional data [2], Joshi et al. [7] used
“margin-based uncertainty” and extracted probabilistic outputs from support vector machines (SVM)
[23]. They used linear, polynomial, and Radial Basis Function (RBF) kernels on the raw images,
picking the kernel that gave best classification accuracy. Contrary to SVM approaches, Li and Guo
[18] used Gaussian processes (GPs) with RBF kernels to get model uncertainty. However Li and
Guo [18] fed low dimensional features (such as SIFT features) to their RBF kernel. Lastly, making
use of unlabelled data as well, Zhu et al. [5] acquire points using a Gaussian random field model,
evaluating an RBF kernel over raw images. We compare to this last technique and explain it in more
detail below.

Other related literate includes semi-supervised learning of image data [24, 21, 22]. In semi-supervised
learning a model is given a fixed set of labelled data, and a fixed set of unlabelled data. The model can
use the unlabelled data to learn about the distribution of the inputs, in the hopes that this information
will aid in learning from the small labelled set as well. Although the learning paradigm is fairly
different from active learning, this research forms the closest modern literature to active learning of
image data. We will compare to these techniques below as well.

3 Bayesian Convolutional Neural Networks

In this paper we concentrate on high dimensional image data, and need a model able to represent
prediction uncertainty on such data. Existing approaches such as [5, 18, 7] rely on kernel methods, and
feed image pairs through linear, polynomial, and RBF kernels to capture image similarity as an input
to an SVM for example. In contrast, we rely on specialised models for image data, and in particular
on convolutional neural networks (CNNs) [12, 13]. Unlike the kernels above which cannot capture
spatial information in the input image, CNNs are designed to use this spatial information, and have
been used successfully to achieve state-of-the-art results [9]. To perform active learning with image
data we make use of the Bayesian equivalent of CNNs, proposed in [19]1. These Bayesian CNNs are

1As far as we are aware, there are no other tools in current literature that offer model uncertainty in specialised
models for image data.
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CNNs with prior probability distributions placed over a set of model parameters ω = {W1, ...,WL}:

ω ∼ p(ω),

with for example a standard Gaussian prior p(ω). We further define a likelihood model

p(y = c|x,ω) = softmax(fω(x))

for the case of classification, or a Gaussian likelihood for the case of regression, with fω(x) model
output (with parameters ω).

To perform approximate inference in the Bayesian CNN model we make use of stochastic regular-
isation techniques such as dropout [15, 16], originally used to regularise these models. As shown
in [20, 25] dropout and various other stochastic regularisation techniques can be used to perform
practical approximate inference in complex deep models. Inference is done by training a model with
dropout before every weight layer, and by performing dropout at test time as well to sample from the
approximate posterior (stochastic forward passes, referred to as MC dropout).

More formally, this approach is equivalent to performing approximate variational inference where we
find a distribution q∗θ(ω) in a tractable family which minimises the Kullback-Leibler (KL) divergence
to the true model posterior p(ω|Dtrain) given a training set Dtrain. Dropout can be interpreted as
a variational Bayesian approximation, where the approximating distribution is a mixture of two
Gaussians with small variances and the mean of one of the Gaussians is fixed at zero. The uncertainty
in the weights induces prediction uncertainty by marginalising over the approximate posterior using
Monte Carlo integration:

p(y = c|x,Dtrain) =

∫
p(y = c|x,ω)p(ω|Dtrain)dω

≈
∫
p(y = c|x,ω)q∗θ(ω)dω

≈ 1

T

T∑
t=1

p(y = c|x, ω̂t)

with ω̂t ∼ q∗θ(ω), where qθ(ω) is the Dropout distribution [25].

Bayesian CNNs work well with small amounts of data [19], and possess uncertainty information
that can be used with existing acquisition functions [25]. Such acquisition functions for the case of
classification are discussed next.

4 Acquisition Functions and their Approximations

We next explore various acquisition functions appropriate for our image data setting, and develop
tractable approximations for us to use with our Bayesian CNNs. In tasks involving regression we
would often use the predictive variance for our acquisition function. For example, we might look for
images with high predictive variance and choose those to ask an expert to label – in the hope that
these will decrease model uncertainty. However, many tasks involving image data are often phrased
as classification problems. For classification, several acquisition functions are available for us:

1. Choose pool points that maximise the predictive entropy (Max Entropy, [26])

H[y|x,Dtrain] := −
∑
c

p(y = c|x,Dtrain) log p(y = c|x,Dtrain).

2. Maximise the mutual information between predictions and model posterior (BALD, [27])

I[y,ω|x,Dtrain] = H[y|x,Dtrain]− Ep(ω|Dtrain)

[
H[y|x,ω]

]
with ω the model parameters. Points that maximise this acquisition function are points on
which the model is uncertain on average, but there exist model parameters that produce
erroneous predictions with high certainty. This is equivalent to points with high variance in
the input to the softmax layer (the logits) – thus each stochastic forward pass through the
model would have the highest probability assigned to a different class.
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3. Maximise Variation Ratios [28]

variation-ratio[x] := 1− fx
T

with fx =
∑
t 1[yt = c∗] and c∗ being the mode of {yt} (a set of samples from the

predictive distribution at input x).
4. Maximise Mean STD [29, 30]

σ(x) =
1

C

∑
c

√
Eq(ω)[p(y = c|x,ω)2]− Eq(ω)[p(y = c|x,ω)]2

averaged over all c classes x can take. Compared to the above acquisition functions, this is
more of an ad-hoc technique used in recent literature.

5. Random acquisition (baseline): g(x) = 1
N with N pool points.

These acquisition functions and their properties are discussed in more detail in [25, pp. 48–52].

We can approximate each of these acquisition functions using our approximate distribution q∗θ(ω).
For BALD for example, we can write the acquisition function as follows:

I[y,ω|x,Dtrain] : = H[y|x,Dtrain]− Ep(ω|Dtrain)

[
H[y|x,ω]

]
= −

∑
c

p(y = c|x,Dtrain) log p(y = c|x,Dtrain)

+ Ep(ω|Dtrain)

[∑
c

p(y = c|x,ω) log p(y = c|x,ω)

]
with c the possible classes y can take. I[y,ω|x,Dtrain] can be approximated in our setting using the
identity p(y = c|x,Dtrain) =

∫
p(y = c|x,ω)p(ω|Dtrain)dω:

I[y,ω|x,Dtrain] = −
∑
c

∫
p(y = c|x,ω)p(ω|Dtrain)dω log

∫
p(y = c|x,ω)p(ω|Dtrain)dω

+ Ep(ω|Dtrain)

[∑
c

p(y = c|x,ω) log p(y = c|x,ω)

]
.

Swapping the posterior p(ω|Dtrain) with our approximate posterior q∗θ(ω), and through MC sampling,
we then have:

≈ −
∑
c

∫
p(y = c|x,ω)q∗θ(ω)dω log

∫
p(y = c|x,ω)q∗θ(ω)dω

+ Eq∗θ (ω)

[∑
c

p(y = c|x,ω) log p(y = c|x,ω)

]
≈ −

∑
c

(
1

T

∑
t

p̂tc

)
log

(
1

T

∑
t

p̂tc

)
+

1

T

∑
c,t

p̂tc log p̂tc := Î[y,ω|x,Dtrain]

defining our approximation, with p̂tc the probability of input x with model parameters ω̂t ∼ q∗θ(ω) to
take class c:

p̂t = [p̂t1, ..., p̂
t
C ] = softmax(f ω̂t(x)).

We then have

Î[y,ω|x,Dtrain] −−−−→
T→∞

H[y|x,Dtrain]− Eq∗θ (ω)

[
H[y|x,ω]

]
≈ I[y,ω|x,Dtrain],

resulting in a computationally tractable estimator approximating the BALD acquisition function. The
other acquisition functions can be approximated similarly.

In the next section we will experiment with these acquisition functions and assess them empirically.
These will be compared to a baseline acquisition function which uniformly acquires new data points
from the pool set at random, and to various other techniques for active learning of image data and
semi-supervised learning.
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5 Active Learning with Bayesian Convolutional Neural Networks

We study the proposed technique for active learning of image data. We compare the various acquisition
functions relying on Bayesian CNN uncertainty with a simple image classification benchmark. We
then study the importance of model uncertainty by evaluating the same acquisition functions with a
deterministic CNN. This is followed by a comparison to a current technique for active learning with
image data, which relies on SVMs. We finish with a comparison to the closest modern models to our
active learning with image data – semi-supervised techniques with image data. These semi-supervised
techniques have access to much more data than our active learning models, yet we still perform in
comparable terms to them.

5.1 Comparison of various acquisition functions

We next study all acquisition functions above with our Bayesian CNN trained on the MNIST
dataset [31]. All acquisition functions are assessed with the same model structure: convolution-
relu-convolution-relu-max pooling-dropout-dense-relu-dropout-dense-softmax, with 32 convolution
kernels, 4x4 kernel size, 2x2 pooling, dense layer with 128 units, and dropout probabilities 0.25 and
0.5 (following the example Keras MNIST CNN implementation [32]).

All models are trained on the MNIST dataset with a (random but balanced) initial training set of
20 data points, and a validation set of 100 points on which we optimise the weight decay (this a
realistic validation set size, in comparison to the standard validation set size of 5K used in similar
applications such as semi-supervised learning on MNIST). We further use the standard test set of
10K points, and the rest of the points are used as a pool set. The test error of each model and each
acquisition function was assessed after each acquisition, using the dropout approximation at test time.
To decide what data points to acquire though we used MC dropout following the derivations above.
We repeated the acquisition process 100 times, each time acquiring the 10 points that maximised the
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Figure 1: MNIST test accuracy as a function of number
of acquired images from the pool set (up to 1000 images,
using validation set size 100, and averaged over 3 repetitions).
Four acquisition functions (BALD, Variation Ratios, Max
Entropy, and Mean STD) are evaluated and compared to a
Random acquisition function.

Technique Test error

Semi-supervised:
Semi-sup. Embedding [24] 5.73%
Transductive SVM [24] 5.38%
MTC [33] 3.64%
Pseudo-label [34] 3.46%
AtlasRBF [35] 3.68%
DGN [21] 2.40%
Virtual Adversarial [36] 1.32%
Ladder Network (Γ-model) [22] 1.53%
Ladder Network (full) [22] 0.84%

Active learning with
various acquisitions:

Random 4.66%
BALD 1.80%
Max Entropy 1.74%
Var Ratios 1.64%

Figure 2: Test error on MNIST with
1000 labelled training samples, com-
pared to semi-supervised techniques.
Active learning has access to only the
1000 acquired images. Semi-supervised
further has access to the remaining im-
ages with no labels. Following existing
research we use a large val. set of 5000.
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acquisition function over the pool set. Each experiment was repeated 3 times and the results averaged
(the standard deviation for the 3 repetitions is shown in fig. 3 below)2.

We compared the acquisition functions BALD, Variation Ratios, Max Entropy, Mean STD, and the
baseline Random. We found Random and Mean STD to under-perform compared to BALD, Variation
Ratios, and Max Entropy (figure 1). The Variation Ratios acquisition function seems to obtain slightly
better accuracy faster than BALD and Max Entropy. It is interesting that Mean STD seems to perform
similarly to Random – which samples points at random from the pool set.

Lastly, in table 1 we give the number of acquisition steps needed to get to test errors of 5% and 10%.
As can be seen, BALD, Variation Ratios, and Max Entropy attain a small test error with much fewer
acquisitions than Mean STD and Random. This table demonstrates the importance of data efficiency –
an expert using the Variation Ratios model for example would have to label less than half the number
of images she would have had to label had she acquired new images at random.

% error BALD Var Ratios Max Entropy Mean STD Random

10% 145 120 165 230 255
5% 335 295 355 695 835

Table 1: Number of acquired images to get to model error of % on MNIST.

5.2 Importance of model uncertainty

We assess the importance of model uncertainty in our Bayesian CNN by evaluating three of the
acquisition functions (BALD, Variation Ratios, and Max Entropy) with a deterministic CNN. Much
like the Bayesian CNN, the deterministic CNN produces a probability vector which can be used with
the acquisition functions of §4 (formally, by setting q∗θ(ω) = δ(ω − θ) to be a point mass at the
location of the model parameters θ). Such deterministic models can capture aleatoric uncertainty –
the noise in the data – but cannot capture epistemic uncertainty – the uncertainty over the parameters
of the CNN which we try to minimise. The models in this experiment still use dropout, but for
regularisation only (i.e. we do not perform MC dropout at test time).

A comparison of the Bayesian models to the deterministic models for the BALD, Variation Ratios, and
Max Entropy acquisition functions is given in fig. 3. The Bayesian models, propagating uncertainty
throughout the model, attain higher accuracy early on, and converge to a higher accuracy overall.
This demonstrates that the uncertainty propagated throughout the Bayesian models has a significant
effect on the models’ measure of their confidence.
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Figure 3: Test accuracy as a function of number of acquired images for various acquisition functions,
using both a Bayesian CNN (red) and a deterministic CNN (blue).

2The code for these experiments is available at
https://github.com/Riashat/Active-Learning-Bayesian-Convolutional-Neural-Networks/
tree/master/ConvNets/FINAL_Averaged_Experiments/Final_Experiments_Run.
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Figure 4: MNIST test accuracy (two digit classification) as a function of number acquired
images, compared to a current technique for active learning of image data: MBR [5].

5.3 Comparison to current active learning techniques with image data

We next compare to a method in the sparse existing literature of active learning with image data,
concentrating on [5] which relies on a kernel method and further leverages the unlabelled images
(which will be discussed in more detail in the next section). Zhu et al. [5] evaluate an RBF kernel over
the raw images to get a similarity graph which can be used to share information about the unlabelled
data. Active learning is then performed by greedily selecting unlabelled images to be labelled, such
that an estimate to the expected classification error is minimised. This will be referred to as MBR.

MBR was formulated for the binary classification case, hence we compared MBR to the acquisition
functions BALD, Variation Ratios, Max Entropy, and Random on a binary classification task (two
digits from the MNIST dataset). Classification accuracy is shown in fig. 4. Note that even a random
acquisition function, when coupled with a CNN (a specialised model for image data) outperforms
MBR which relies on an RBF kernel. We further experimented with a CNN version for MBR where
we replaced the RBF kernel with a CNN. It is interesting to note that this did not give improved
results.

5.4 Comparison to semi-supervised learning

We finish with a comparison to the closest models (in modern literature) to our active learning with
image data: semi-supervised learning with image data. In semi-supervised learning a model is given
a fixed set of labelled data, and a fixed set of unlabelled data. The model can use the unlabelled
dataset to learn about the distribution of the inputs, in the hopes that this information will aid in
learning the mapping to the outputs as well. Several semi-supervised models for image data have
been suggested in recent years [24, 21, 22], models which have set benchmarks on MNIST given a
small number of labelled images (1000 random images). These models make further use of a (very)
large unlabelled set of 49K images, and a large validation set of 5K-10K labelled images to tune
model hyper-parameters and model structure [22]. These models have access to much more data than
our active learning models, but we still compare to them as they are the most relevant models in the
field given the constraint of small amounts of labelled data.

Test error for our active learning models with various acquisition functions (after the acquisition of
1000 training points), as well as the semi-supervised models, is given in table 2. In this experiment,
to be comparable to the other techniques, we use a validation set of 5K points. Our model attains
similar performance to that of the semi-supervised models (although note that we use a fairly small
model compared to [22] for example). Rasmus et al. [22]’s ladder network (full) attains error 0.84%
with 1000 labelled images and 59,000 unlabelled images. However, [22]’s Γ-model architecture is
more directly comparable to ours. The Γ-model attains 1.53% error, compared to 1.64% error of our
Var Ratio acquisition function which relies on no additional unlabelled data.

6 Future Research

We presented a new approach for active learning of image data, relying on recent advances at the
intersection of Bayesian modelling and deep learning. This approach would hopefully lay the way to
a variety of new applications in medical diagnosis, microbiology, and manufacturing. Future research
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includes the extension of the ideas above to more complex models, able to represent better uncertainty
estimates, and capture more complex data.
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