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Abstract

Deep generative models (DGMs) offer the promise of improved unsupervised and
semi-supervised learning, and could overcome current limitations of established
deep learning methods such as by being robust to adversarial examples and being
able to learn from smaller data sets. However, progress in learning is required
before these methods become practical. To these ends, we propose to combine
multi-sample, or rather Monte Carlo, objectives with the Rényi α-divergence
measure to obtain an improved bound on the log-likelihood.

1 Introduction

The goal of unsupervised learning is often to learn a distribution over the input data. Models such as
the variational autoencoder ([KW13]) and sigmoid belief network (SBN) assume that the data, x is
generated by a number of independent latent causes, h, and simultaneously learn the parameters to
the model, p(x,h), and an approximation to the posterior, q(h | x), by optimizing a bound to the
intractable log-likelihood of the inputs.

Learning methods for these models take as their starting point the standard variational inference
bound (i.e. the ELBO),

L(q ; x) = Eq
[
ln

(
pφ(x,h)

qψ(h | x)

)]
.

and develop methods for reducing the variance over the naive gradient of this bound based on the
log-derivative trick (which is too great to be practical).

Further work has involved modifying the variational objective to improve learning. For instance,
[BGS16] showed a tighter bound on the log-likelihood can be obtained by using multiple samples
inside the expectation,

LK(q ; x) = Eq

[
ln

(
1

K

K∑
k=1

pφ(x,hk)

qψ(hk | x)

)]
.

They prove that the bound approaches the log-likelihood in the limit as K goes to infinity. Intuitively,
taking more samples inside the sum lessens the need for a single sample to explain the posterior well.
[MR16] develop a control variate for this multi-sample objective with the log-derivative trick so that
the technique can be used with discrete valued variables.

In other work, [LT16] investigated replacing the KL-divergence with Rényi’s α-divergence measure
to obtain the bound,

Lα(q ; x) =
1

1− α
lnEq

[(
pφ(x,h)

qψ(h | x)

)1−α
]
.
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Figure 1: Varying the value of α for α-VIMCO and comparing to standard VIMCO.

They show that the ELBO is recovered in the limit α → 1, and as α → 0 the bound on the
log-likelihood is tightened.

We propose to combine the two techniques by using the following multi-sample Rényi bound,

Lα,K(q ; x) =
1

1− α
lnEq

( 1

K

K∑
k=1

pφ(x,hk)

qψ(hk | x)

)1−α .
and conjecture that the resulting method is superior to either alone. We follow the approach of
[MR16], termed VIMCO, and use the log-derivative trick with a control variate to form a Monte
Carlo estimate of the gradient, which we call α-VIMCO. Our estimate has the same advantage of
VIMCO in that it can be used with both discrete and continuous variables, unlike those based on the
reparametrization trick, but has two ways of tightening the bound. In order to calculate the estimate
of the gradient, samples {hj,k} must be taken over a second dimension j, which is used to estimate
an expectation over the sum.

2 Experiments

In preliminary experiments, α-VIMCO was compared to standard VIMCO for unsupervised learning
on the MNIST data set. For α-VIMCO, we used five samples of size five, and for VIMCO both five
samples of size five, and one sample of size twenty-five.

The generative model used for p(x,h) was a sigmoid belief network (SBN). The latent space
comprised a single hidden layer of 200 binary valued variables. The prior, p(h), on the latent
variables defined them to be independently Bernoulli distributed with probability 0.5. For the decoder
p(x | h), the value of h fed through three densely connected deterministic layers of 200 variables
each with ReLU activations and batch normalization, followed by a logistic activation to give the
parameters to the distribution over the stochastic input x of 784 binary features. The proposal,
q(h | x) used an analogous architecture with the edges reversed.

The bound was optimized with SGD and an Adam adaptive stepsize scheme ([KB14]). The gradient
was normalized so that its sum did not exceed 5. Then the individual elements were clipped to [−1, 1].
Learning proceeded for 1000 epochs, with the Adam learning rate being annealed after 500 epochs
by decreasing it by a percent every subsequent epoch. The bound estimate was reported both on the
training and test sets every epoch. See Figure 1.

We see that for moderate values of α, that is, α = 0.9 and α = 0.75, α-VIMCO obtains a higher
bound than VIMCO on the test set. For lower values of α it underperforms and this may be due to
increased Monte Carlo noise or the more mass-covering (as opposed to mode-seeking) nature of the
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objective. Samples were drawn from all parameter settings after 1000 epochs—it was hard to tell any
qualitative differences apart from the case α = 0.1. Further results are available upon request.

3 Discussion

Further work is required to understand the relationship of the variance of the Monte Carlo estimate of
the bound as α is varied. Also, further experiments are necessary to determine the effect of varying
the sample size in both dimensions, and to evaluate deeper architectures with more stochastic layers
on other data sets.

We hypothesize that the full benefits of α-VIMCO become apparent with deeper architectures and
increased number of samples. It would also be interesting to compare the performance of the
algorithm with α = 0.5 to the method of [BSFB16], in which a Bhattacharyya distance is minimized
(the case α = 0.5 is a function of the Hellinger distance, which is closely related to the Bhattacharyya
distance).
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