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1 Introduction
The “Big Data” revolution is spawning systems designed to make decisions from data.
In particular, deep learning methods have emerged as the state of the art method in
many important breakthroughs [18, 20, 28]. This is due to the statistical flexibility and
computational scalability of large and deep neural networks which allows them to harness
the information of large and rich datasets. At the same time, elementary decision theory
shows that the only admissible decision rules are Bayesian [5, 30]. Colloquially, this means
that any decision rule which is not Bayesian can be strictly improved (or even exploited)
by some Bayesian alternative [6]. The implication of these results is clear: combine deep
learning with Bayesian inference for the best decisions from data.
There is a persistent history of research in Bayesian neural nets which never quite gained
mainstream traction [19, 21]. The majority of deep learning research has evolved outside of
Bayesian (or for that matter statistical) analysis [26, 18]. Recently, Bayesian deep learning
has experienced a resurgence of interest [16, 1, 12]; one explanation for this revival is the
rise of automated deep learning decision systems for which effective uncertainty estimates
are essential [30]. In this paper we investigate several popular approaches for uncertainty
estimation in neural networks. We find that several popular approximations to the uncertainty
of a unknown neural net model are in fact approximations to the risk given a fixed model [17].
We review that conflating risk with uncertainty can lead to arbitrarily poor performance in
a sequential decision problem [9]. We present a simple and practical solution to this problem
based upon smoothed bootstrap sampling [7, 22].

2 Risk versus uncertainty
In sequential decision problems there is an important distinction between risk and uncertainty
[17]. In this document we identify risk as inherent stochasticity in a model and uncertainty
as the confusion over which model parameters apply. For example, a coin may have a fixed
p = 0.5 of heads and so the outcome of any single flip holds some risk; a learning agent
may also be uncertain of p. The demarcation between risk and uncertainty is tied to the
specific model class, in this case a Bernoulli random variable; with a more detailed model of
flip dynamics even the outcome of a coin may not be risky at all. Our distinction is that
unlike risk, uncertainty captures the variability of an agent’s posterior belief which can be
resolved through statistical analysis of the appropriate data. For a learning agent looking to
maximize cumulative utility through time, this distinction represents a crucial dichotomy [2].
Consider the reinforcement learning problem of an agent interacting with its environment
while trying to maximize cumulative utility through time. At each timestep, the agent faces
a fundamental tradeoff: by exploring uncertain states and actions the agent can learn to
improve its future performance, but it may attain better short-run performance by exploiting
its existing knowledge. At a high level this effect means uncertain states are more attractive
since they can provide important information to the agent going forward. On the other
hand, states and action with high risk are actually less attractive for an agent in both
exploration and exploitation. For exploitation, any concave utility will naturally penalize risk
[4]. For exploration, risk also makes any single observation less informative [27]. Although
colloquially similar, risk and uncertainty can require radically different treatment.
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3 A didactic example
To highlight the practical distinction between risk and uncertainty we begin with a maximally
simplistic example. Fix n ∈ N and let y1, .., yn ∈ R be i.i.d. samples from an unknown
distribution F . Given this data, we might be interested in estimating the mean E[Y ], the
variance Var(Y ) and also to give some measure of our uncertainty over these quantities. Of
course, this problem is horribly ill-defined: imagine if I gave you a dataset {y1=7} and asked
you estimate the mean E[Y ]... we have no idea if the expectation is well-defined! To even
attempt to answer these sorts of questions requires some form of prior information.
The subjective Bayesian framework provides a coherent solution to this problem. First the
agent specifies a prior distribution for the parameters of interest, then it should update its
beliefs according to Bayes rule based upon the data it observes [14, 6]. For clarity, in the
example above we might model that the observations yi ∼ N(µ∗, σ2) where µ∗ ∼ N(µ0, σ
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The precise form of this posterior is relatively unimportant compared its qualitative charac-
teristics. First, this distribution models the uncertainty in the unknown parameter µ∗ by σ2

n
as distinct from the risk σ2. Second, this uncertainty is concentrates with observed data so
that in the limit of infinite data it is resolved σ2

n → 0. These high level properties are not
specific to this example but are general characteristics of coherent Bayesian inference [6].
The Bayesian solution to this toy problem is disarmingly simple because the specific prior
model admits conjugate updates [5]. With more complex models, such as deep neural
networks, this will not be the case. Here, computational approximations must take the place
of some analytical manipulations [3, 31, 1]. One of the most popular recent suggestions has
been to use dropout sampling [29, 12] (where individual neurons are independently set to
zero with probability p) to “get uncertainty information from these deep learning models for
free – without changing a thing” [10]. Unfortunately, as we now show, dropout sampling can
be better thought of as an approximation the risk in y, rather than the uncertainty of the
learned model. Further, using a fixed dropout rate p, rather than optimizing this variational
parameter can lead an arbitrarily bad approximation to the risk [15].

Consider a linear network f =
∑K

k=1 dkwk with dropout dk ∼ Ber(p) and weights wk ∈ R.
Minimizing the mean squared error on {y1, .., yn} for y:=

∑n
i=1 yi/n the resulting optimum

wk = y/K(1− p) produces a binomial distribution with mean y and variance py/(1− p)K.
The resulting “dropout posterior” can have arbitrarily small or large variance depending on
the interaction between the dropout rate p and the model size K. This distribution does
not concentrate as more data is gathered and has no dependence on the amount of data n,
nor the observed variance in the data. Optimizing the dropout rate [15] or switching to a
heteroskedastic loss [11] can lead to a more accurate approximation of the risk, but does not
address the fundamental flaws in this application for model uncertainty [11].
An alternative pragmatic approach to non-parametric computational uncertainty estimation
is given by the bootstrap, a method for data-based simulation [7]. At a high level, the
bootstrap samples multiple realizations of a given dataset perturbed by some noise, fits an
estimator on each sampled dataset and then uses the resulting distribution to approximate
uncertainty [8]. For certain choices of sampling/perturbations this process is precisely
equivalent to Bayesian inference [25, 23]. Note that simply adding i.i.d. N(0, σ2) noise to
the labels yi is equivalent to limit of prior variance σ2

0 →∞ in (1) [13].

4 Paper outline
We extend the analysis from Section 3 to linear functions and argue that this behavior
also carries over to deep learning; extensive computational results support this claim. We
investigate the importance of risk and uncertainty in sequential decision problems and why
this setting is crucially distinct from standard supervised learning tasks. We highlight the
dangers of a naive applications dropout (or any other approximate risk measure) as a proxy
for uncertainty. We present analytical regret bounds for algorithms based upon smoothed
bootstrapped uncertainty estimates that complement their strong performance in complex
nonlinear domains [24, 22].
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APPENDIX

In this appendix we present some early computational results that serve to highlight the
practical implications of using dropout for uncertainty estimates. We compare six distinct
methods for uncertainty estimation in a sequence of one-dimensional regression tasks.

1. Naive ensemble - 10 models trained from different random initialization.

2. Smoothed ensemble - 10 models each trained with target smoothing ỹk
i = yi +

wk ∼ N(0, 1/4).

3. Bootstrap ensemble - 10 models each trained on bootstrapped subsets of the
data.

4. SmoothedBoot ensemble - 10 models each trained on bootstrapped subsets of
the data with additional target smoothing ỹk

i = yi + wk ∼ N(0, 1/4).

5. Dropout p = 0.5 - a single model evaluated for 1000 monte-carlo dropout samples
with p = 0.5.

6. Dropout p = 0.9 - a single model evaluated for 1000 monte-carlo dropout samples
with p = 0.9.

Figure 1: Linear regression with little data.

Figure 2: Linear regression with lots of data.
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Figure 3: Nonlinear regression with (50, 50) MLP.

Figure 4: Dropout with heteroskedastic noise approximates the risk, but is a precisely the
opposite of the uncertainty of the regression mean. Screenshot taken from

http://mlg.eng.cam.ac.uk/yarin/
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