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1 Introduction

Probabilistic programming languages (PPLs) allow the representation of probability distributions as
computer programs by means of stochastic language primitives and conditioning of variable values
on observations [8, 7]. Probabilistic programs are generative models as they generate samples from a
joint distribution p(x, y), where x are latent variables and y are output (or observed) data. Inference
in PPLs amounts to computing the posterior p(x|y) conditioned on observed data. PPLs allow
decoupling model specification from inference, which can be handled by techniques including Markov
chain Monte Carlo [18], variational methods [19], expectation propagation [16], and sequential Monte
Carlo [20]. Inference is often computationally expensive. Amortized inference [5] strategies are
devised to store and reuse past inferences so that future inferences run faster.

2 Inference Compilation

We outline a framework [13] for using deep neural networks to amortize the cost of inference in
universal PPLs—Ilanguages such as Church [6], Venture [14], and Anglican [20] that are Turing-
complete and can represent any computable probability distribution [4]. We call this framework
“inference compilation” because our method, given only a probabilistic program, automatically
constructs a neural network architecture and trains it using a stream of training data from the
model, producing a specialized compilation artifact that subsequently performs efficient approximate
inference in the original model specified by the probabilistic program. This work can be seen from
two perspectives where we (1) incorporate deep learning techniques into probabilistic programming
to amortize the cost of inference, and, at the same time, (2) lay out a framework for using universal
PPLs for defining generative models in deep learning, where the specified neural networks are trained
using an “infinite” stream of synthetic data from the model, and we get supervision for free. Seen in
this light, our efforts reside at the intersection of Bayesian approaches and deep learning.

Sequential importance sampling. During inference, our technique uses compilation artifacts to
parameterize proposal distributions ¢(x|y; ¢) in a sequential importance sampling scheme [1, 3],
where ¢ represents the trainable artifact weights.

Objective function. We use the Kullback-Leibler divergence Dy (p(x|y) || ¢(x|y;)) as
a measure of closeness between p(x|y) and ¢(x|y;¢) and minimize the loss L(¢) =

—ﬁ Zn]\le log q(x("™)|y(™): $) on execution traces (x(™), y(™) ~ p(x,y), m=1,..., M.

Training data. During compilation, minibatches of program traces (x("),y(™)) are generated
on-the-fly from the probabilistic model and streamed to a stochastic gradient descent procedure using
Adam [11] for optimizing neural network weights ¢.
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Figure 1: The stochastic decision process.

Neural network architecture. Compilation artifacts comprise a non-program-specific stacked
LSTM [10] core and program-specific observation embedding, sample embeddings, and proposal
layers specified by the probabilistic program. The artifacts are implemented in Torch [2] and our
framework uses ZeroMQ [9] for interfacing with Anglican [20] during compilation and inference.
This setup allows distributed inference with GPU support across many machines.

3 Example

In our recent work [13] we demonstrate using PPLs for generative modeling in inverse graphics
(Captcha solving) and mixture models (identifying the number and parameters of components in an
observed mixture).

Here, we show how we can view hierarchical reinforcement learning (RL) [12] as a nested inference
scheme in probabilistic programming where we cast policy learning of intrinsic goals as inference
on what we call an inner query, which is used inside an outer query that performs inference over
sub-goal selection. We then “compile away” the inferential task of the inner query.

We formulate a stochastic decision process (Figure 1) that highlights the need for temporally
extended exploration (similar to Kulkarni et al. [12] and Osband et al. [17]), with states
S = {s1, 82, 83, 84, 5, $¢} and actions A = {left, right,end}. The agent starts at sy. If the ac-
tion left is chosen, it moves to the left deterministically. The right action moves it to the left or right
with equal probability. The end action ends the execution of a current policy and ends the game if the
agent is executing the last policy.! The game ends automatically if the agent reaches s; regardless
of its action. The agent is rewarded with » = 0 for end states other than s;. Otherwise r = 1 or
r = 0.01 depending on whether sg was visited or not.

As explored by Kulkarni et al. [12], this example illustrates the difficulties faced by current RL
algorithms on problems with sparse feedback. In the same spirit, we aim to decompose the problem
into smaller problems, which can be solved by a specialized controller that is then used inside a
meta-controller. In particular, we define an inner query named go-to, which during inference is
responsible for outputting the policy with reaching the goal-state being the intrinsic motivation.
This intrinsic motivation is enforced by placing an approximate Bayesian computation (ABC) [15]
likelihood over the last state of the simulation being the goal-state. We also simulate over all
possible start-state values from S. The query is written in Anglican® as shown in the following
listing.
(defquery go-to [game goal-state]
(let [policy (sample policy-dist)]
(loop [start-state 1]
(if (< start-state 7)
(let [history (execute-policy game start-state policy)]
(observe (dirac (last history)) goal-state)
(recur (inc start-state)))))
policy))

!"This policy change is a state change in a state space that is a Cartesian product of the agent and simulation
state spaces. Hence the stochastic decision process in Figure 1 can be thought of as one of many subprocesses—
each corresponding to the agent’s current active policy—of an underlying stochastic decision process with the
end action moving between them.

*More details and syntax can be found at http://www.robots.ox.ac.uk/ fwood/anglican/.
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Figure 2: Policies from inference compilation of go-to with one particle; averaged over 100 runs.
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Figure 3: The empirical distribution over (goal-1, goal-2) from the outer query play run with
sequential Monte Carlo with 100 particles and the inner query go-to run with inference compilation
with one particle; averaged over 100 runs.

This is used inside an outer query® named play, which does inference over the intermediate high-
reward goal goal-1 and the end goal goal-2 for the particular game dynamics specified by a given
game variable —which, in this experiment, has high-reward state sg and terminal state s;. This query
returns two policies: one to reach the intermediate goal goal-1; and another to reach the end goal
goal-2. The query is written in Anglican as shown in the listing below.

(defquery play [gamel
(let [goal-1 (sample (uniform-discrete 1 7))

goal-2 (sample (uniform-discrete 1 7))
policy-1 (sample ((conditional go-to) game goal-1))
policy-2 (sample ((conditional go-to) game goal-2))
history (execute-policy game 2 policy-1 policy-2)

(observe (factor) (get-reward history))

[goal-1 goal-2 policy-1 policy-21]1))

Inference of the inner query is performed using our inference compilation framework. In Figure 2 we
can see that the compilation artifact allows us to identify reasonable policies using only one particle
of sequential importance sampling. In Figure 3, inference over the outer query using sequential
Monte Carlo with 100 particles returns an empirical distribution over the subgoals (goal-1, goal-2)
peaked at (sg, s1). Picking the maximum a posteriori policy pair (policy-1, policy-2), we obtain
0.17 average reward over 1000 runs.

The full theoretical underpinnings of the correspondence of our work to reinforcement learning are
left for future work.

3The implementation here uses the Anglican special form conditional that takes in a query and returns a
distribution object constructor, which, given the query parameter, returns a distribution object that represents the
conditional distribution for that query and can be sampled from like any other primitive distribution (e.g. normal).
For instance, (conditional go-to) is a distribution object constructor and ((conditional go-to) 5) is
a distribution object returning the posterior policy sampler for go-to with goal state se.
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