
Deep Probabilistic Programming

Dustin Tran
Columbia University

Matt Hoffman
Adobe Research

Kevin Murphy
Google Research

Eugene Brevdo
Google Brain

Rif A. Saurous
Google Research

David M. Blei
Columbia University

Abstract
We propose Edward, a new Turing-complete probabilistic programming language
which builds on two compositional representations—random variables and infer-
ence. We show how to integrate our language into existing computational graph
frameworks such as TensorFlow; this provides significant speedups over existing
probabilistic systems. We also show how Edward makes it easy to fit the same
model using a variety of composable inference methods, ranging from point es-
timation, to variational inference, to mcmc. By treating inference as a first class
citizen, on a par with modeling, we show that probabilistic programming can be
as computationally efficient and flexible as traditional deep learning. For example,
we show how to reuse the modeling representation within inference to design rich
variational models and generative adversarial networks.

1 Introduction

Deep neural networks have become popular in large part due to their compositional nature. This
lets users mix and match layers in novel creative ways, without having to worry about how to per-
form testing (just use forward propagation) or inference (just use a generic gradient-based optimizer,
combined with back propagation and automatic differentiation).

In this paper, we aim to design compositional representations for probabilistic programming. Most
previous work has focused on how to build rich probabilistic programs by composing random vari-
ables (Goodman et al., 2012; Ghahramani, 2015; Lake et al., 2016). Less work has considered an
analogous compositionality for inference. In fact, most existing probabilistic programming languages
treat the inference engine as a black box, abstracted away from the model. Such systems cannot cap-
ture recent advances in probabilistic modeling such as in variational inference (Kingma andWelling,
2014; Rezende and Mohamed, 2015; Tran et al., 2016b) and generative adversarial networks (Good-
fellow et al., 2014). This is because they require reuse of the modeling representation to construct
rich variational models and discriminative networks during inference.

We propose Edward1, a new Turing-complete probabilistic programming language which builds on
two compositional representations—random variables and inference. We show how to integrate our
language into existing computational graph frameworks such as TensorFlow (Abadi et al., 2016).
By leveraging such frameworks, we get distributed training, parallelism, vectorisation, and GPU
support “for free”. We also show how Edward makes it easy to fit the same model using a variety
of composable inference methods, ranging from point estimation, to variational inference, to mcmc.
By treating inference as a first class citizen, on a par with modeling, we show that probabilistic
programming can be as computationally efficient and flexible as traditional deep learning.

1Available at http://edwardlib.org. See Tran et al. (2016a) for details of the API. This paper focuses
on the algorithmic foundations of Edward; a longer version will be on the arXiv shortly.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

http://edwardlib.org

zn

xn

θφ

N

1 # Probabilistic model
2 z = Normal(mu=tf.zeros([N, d]), sigma=tf.ones([N, d]))
3 h = slim.fully_connected(z, 256)
4 x = Bernoulli(logits=slim.fully_connected(h, 28 * 28, activation_fn=None))
5
6 # Variational model
7 qx = tf.placeholder(tf.float32, [N, 28 * 28])
8 qh = slim.fully_connected(qx, 256)
9 qz = Normal(mu=slim.fully_connected(qh, d, activation_fn=None),
10 sigma=slim.fully_connected(qh, d, activation_fn=tf.nn.softplus))

Figure 1: Variational auto-encoder for a data set of 28 × 28 pixel images: (left) graphical model,
with dotted lines for the inference model; (right) probabilistic program, with 2-layer neural networks.

2 Compositional Representations for Probabilistic Models

We define random variables as a key compositional representation. They are class objects with meth-
ods, for example, to compute the log density and to sample. Further, each random variable x is asso-
ciated to a tensor x∗ in the computational graph, which represents a single sample x∗ ∼ p(x). This
association embeds the random variable into the computational graph.

This design is conceptually simple, making it easy to develop probabilistic programs in a compu-
tational graph framework. Importantly, all computation is represented on the graph. This makes it
easy to parameterize random variables with complex deterministic structure, such as with deep neu-
ral networks and a diverse set of math operations. The design also enables compositions of random
variables to capture complex stochastic structure.

With computational graphs, it is also natural to build mutable states within the probabilistic program.
As a typical use of computational graphs, such states can define model parameters; in TensorFlow,
this is given by a tf.Variable. Another use case is for building discriminative models p(y |x), where
x are features that are input as training or test data. The program can be written independent of the
data, using a mutable state (tf.placeholder) for x in its graph. During training and testing, we feed
the placeholder the appropriate values. In Appendix A.1, we demonstrate this with a Bayesian neural
network for classification. We give other examples below.

2.1 Example: Variational Auto-encoder

Figure 1 implements a variational auto-encoder (vae) (Kingma and Welling, 2014; Rezende et al.,
2014) in Edward. There are N data points {xn} and d latent variables per data point {zn}. The
program uses TensorFlow Slim (Guadarrama and Silberman, 2016) to define the neural networks.
The probabilistic model is parameterized by a 2-layer neural network, with 256 hidden units (and
ReLU activation), and generates 28 × 28 pixel images. The variational model is parameterized by
a 2-layer inference network, with 256 hidden units and outputs parameters of a normal posterior
approximation.

The probabilistic program is concise. Importantly, core elements of the vae—such as its distribu-
tional assumptions and neural net architectures—are all extensible. Model compositionality enables
it to be embedded into more complicated models (Gregor et al., 2015; Rezende et al., 2016) and
for other learning tasks (Kingma et al., 2014). Inference compositionality (which we discuss later)
enables it to be embedded into more complicated algorithms, such as with expressive variational ap-
proximations (Rezende and Mohamed, 2015; Tran et al., 2016b; Kingma et al., 2016) and alternative
objectives (Ranganath et al., 2016; Li and Turner, 2016; Dieng et al., 2016).

2.2 Stochastic Control Flow and Model Parallelism

Random variables can also be integrated with control flow, enabling probabilistic programs with
stochastic control flow. Stochastic control flow defines dynamic conditional dependencies, known in
the literature as contingent or existential dependencies (Mansinghka et al., 2014; Wu et al., 2016).
See Figure 2, where x may or may not depend on a for a given execution.

2

p
p∗

tf.while_loop(...)a∗

a

x
x∗

Figure 2: Computational graph for a probabilistic program with stochastic control flow.

We use stochastic control flow to implement a Dirichlet process mixture model in Appendix A.2.
Stochastic control flow produces difficulties for algorithms that leverage the graph structure; the
relationship of conditional dependencies changes across execution traces. Importantly, the computa-
tional graph provides an elegant way of teasing out static conditional dependence structure (p) from
dynamic dependence structure (a). We can perform model parallelism over the static structure with
GPUs and batch training, and use generic computations to handle the dynamic structure.

3 Compositional Representations for Inference

We have described random variables, a representation for building rich probabilistic programs over
computational graphs. We now describe a compositional representation for inference.

For inference, we desire two criteria: (a) support for many classes of inference, where the form of the
inferred posterior depends on the algorithm; and (b) invariance of inference under the computational
graph, that is, the posterior can be further composed as part of another model.

To explain our approach to this problem, we will use a simple hierarchical model p(x, z, β), repre-
sented in Figure 3, as a running example. The ideas extend to more expressive programs.

β

zn xn

N

1 N = 10000 # number of data points
2 D = 2 # data dimension
3 K = 5 # number of clusters
4
5 beta = Normal(mu=tf.zeros([K, D]), sigma=tf.ones([K, D]))
6 z = Categorical(logits=tf.zeros([N, K]))
7 x = Normal(mu=tf.gather(beta, z), sigma=tf.ones([N, D]))

Figure 3: Hierarchical model: (left) graphical model; (right) probabilistic program. It is a mixture of
Gaussians over D-dimensional data {xn} ∈ RN×D. There areK latent cluster means β ∈ RK×D.

3.1 Inference as Stochastic Graph Optimization

Given data xtrain, inference aims to calculate the posterior p(z, β | xtrain;θ), where θ are any model
parameters that we will compute point estimates for.2 We formalize this as the problem,

min
λ,θ
L(p(z, β | xtrain;θ), q(z, β;λ)),

where q(z, β;λ) is an approximation to the posterior p(z, β |xtrain), and L(·) is some loss function
with respect to p and q.

The choice of approximation q, loss L, and rules to update parameters {θ,λ} are specified by an
inference algorithm. (Note q can be nonparametric, such as a point or a collection of samples.)

In our language, we write this problem as follows:
1 inference = ed.Inference({beta: qbeta, z: qz}, data={x: x_train})

where qbeta and qz are random variables defined to approximate the posterior. Inference is an abstract
class which takes two inputs: a collection of latent variables, with model variables bound to poste-
rior variables; and a collection of observed variables, with model variables bound to data. Calling

2For example, we could replace x’s sigma argument with tf.exp(tf.Variable(0.0))*tf.ones([N, D]).
This defines a model parameter initialized at 0 and positive-constrained.

3

inference.initialize() builds a computational graph to update {θ,λ}. Calling inference.update()
runs this computation once to update {θ,λ}; we call the method in a loop until convergence. Below
we will derive subclasses of Inference to represent many methods.

3.2 Representing Classes of Inference

We show how to leverage the above to represent a broad class of inference methods.

In variational inference, the idea is to posit a family of approximating distributions and to find the
closest member in the family to the posterior (Jordan et al., 1999). We build the variational family in
the graph; see Figure 4 (left). The variational family hasmutable variables representing its parameters
λ = {π, µ, σ}, where q(β;µ, σ) = Normal(β;µ, σ) and q(z;π) = Categorical(z;π).

1 qbeta = Normal(
2 mu=tf.Variable(tf.zeros([K, D])),
3 sigma=tf.exp(tf.Variable(tf.zeros[K, D])))
4 qz = Categorical(
5 logits=tf.Variable(tf.zeros[N, K]))
6
7 inference = ed.VariationalInference(
8 {beta: qbeta, z: qz}, data={x: x_train})

1 T = 10000 # number of samples
2 qbeta = Empirical(
3 params=tf.Variable(tf.zeros([T, K, D]))
4 qz = Empirical(
5 params=tf.Variable(tf.zeros([T, N]))
6
7 inference = ed.MonteCarlo(
8 {beta: qbeta, z: qz}, data={x: x_train})

Figure 4: (left) Variational inference. (right) Monte Carlo.

Specific variational inference algorithms inherit from the VariationalInference class to define their
own methods, such as a loss function and gradient. For example, we represent maximum a posteriori
(map) estimation with an approximating family (qbeta and qz) of PointMass random variables, i.e.,
with all probability mass concentrated at a point. MAP inherits from VariationalInference and defines
a loss function and update rules; it leverages existing optimizers inside TensorFlow.

Monte Carlo approximates the posterior using samples (Robert and Casella, 1999). We represent
Monte Carlo as inference where the approximating family is an empirical distribution, q(β; {β(t)}) =
1
T

∑T
t=1 δ(β, β

(t)) and q(z; {z(t)}) = 1
T

∑T
t=1 δ(z, z

(t)). The parameters are λ = {β(t), z(t)}. See
Figure 4 (right). Monte Carlo algorithms proceed by updating one sample β(t), z(t) at a time in
the empirical approximation. Specific mc samplers determine the update rules; they can leverage
gradients and graph structure, where applicable.

The approach also extends to exact inference. We are developing a subpackage that does symbolic
algebra on the deterministic and stochastic nodes in the computational graph; this uncovers conjugacy
relationships between exponential-family random variables. This will allow users to integrate out
variables and automatically derive classical Gibbs and mean-field updates (Bishop, 2006) without
tedious algebraic manipulation.

3.3 Composing Inferences

Core to Edward’s design is that inference can be written as a collection of separate inference pro-
grams. Below we demonstrate variational EM, with an (approximate) E-step over local variables
and an M-step over global variables. We alternate with one update of each (Neal and Hinton,
1993).

1 qbeta = PointMass(params=tf.Variable(tf.zeros([K, D])))
2 qz = Categorical(logits=tf.Variable(tf.zeros[N, K]))
3
4 inference_e = ed.VariationalInference({z: qz}, data={x: x_data, beta: qbeta})
5 inference_m = ed.MAP({beta: qbeta}, data={x: x_data, z: qz})
6
7 for _ in range(10000):
8 inference_e.update()
9 inference_m.update()

This extends to many other cases, such as exact EM for exponential families, contrastive divergence
(Hinton, 2002), pseudo-marginal methods (Andrieu and Roberts, 2009), and Gibbs sampling within
variational inference (Wang and Blei, 2012). We can also write message passing algorithms, which
work over a collection of local inference problems (Koller and Friedman, 2009). For example, the

4

local inference can be exact for classical message passing or minimize KL(p ‖ q) for expectation
propagation (Minka, 2001). In Appendix B, we demonstrate this approach for stochastic variational
inference.

Acknowledgements

We thank the Google BayesFlow team—Joshua Dillon, Ian Langmore, Ryan Sepassi, and Srini-
vas Vasudevan—as well as Amr Ahmed, Matthew Johnson, Hung Bui, Rajesh Ranganath, Maja
Rudolph, and Francisco Ruiz for their helpful feedback and comments. This work is supported by
NSF IIS-1247664, ONR N00014-11-1-0651, DARPA FA8750-14-2-0009, DARPA N66001-15-C-
4032, Adobe, Google, NSERC PGS-D, Porter Ogden Jacobus Fellowship, Seibel Foundation, and
the Sloan Foundation.

5

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P.,
Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zhang, X. (2016). TensorFlow: A system for
large-scale machine learning. arXiv preprint arXiv:1605.08695.

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo
computations. The Annals of Statistics, pages 697–725.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3:993–1022.

Dieng, A. B., Tran, D., Ranganath, R., Paisley, J., and Blei, D. M. (2016). χ-divergence for approx-
imate inference. In arXiv preprint arXiv:1611.00328.

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature,
521(7553):452–459.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative adversarial nets. In Neural Information Processing Systems.

Goodman, N., Mansinghka, V., Roy, D. M., Bonawitz, K., and Tenenbaum, J. B. (2012). Church: A
language for generative models. In Uncertainty in Artificial Intelligence.

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and Wierstra, D. (2015). DRAW: A Recurrent
Neural Network For Image Generation. In International Conference on Machine Learning.

Guadarrama, S. and Silberman, N. (2016). TensorFlow Slim.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational
methods for graphical models. Machine Learning, 37(2):183–233.

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-supervised learning
with deep generative models. In Neural Information Processing Systems.

Kingma, D. P., Salimans, T., and Welling, M. (2016). Improving Variational Inference with Inverse
Autoregressive Flow. In Neural Information Processing Systems.

Kingma, D. P. andWelling,M. (2014). Auto-encoding variational Bayes. In International Conference
on Learning Representations.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT
press.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2016). Building Machines That
Learn and Think Like People. arXiv preprint arXiv:1604.00289.

Li, Y. and Turner, R. E. (2016). Variational inference with Rényi divergence. In Neural Information
Processing Systems.

Mansinghka, V., Selsam, D., and Perov, Y. (2014). Venture: A higher-order probabilistic program-
ming platform with programmable inference. arXiv.org.

Minka, T. P. (2001). Expectation propagation for approximate Bayesian inference. In Uncertainty in
Artificial Intelligence.

Neal, R. M. and Hinton, G. E. (1993). A new view of the em algorithm that justifies incremental and
other variants. In Learning in Graphical Models, pages 355–368. Kluwer Academic Publishers.

Ranganath, R., Altosaar, J., Tran, D., and Blei, D. M. (2016). Operator variational inference. In
Neural Information Processing Systems.

Rezende, D. J. and Mohamed, S. (2015). Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning.

6

W0 b0 W1 b1

ynxn

N

1 W_0 = Normal(mu=tf.zeros([D, H]), sigma=tf.ones([D, H]))
2 W_1 = Normal(mu=tf.zeros([H, 1]), sigma=tf.ones([H, 1]))
3 b_0 = Normal(mu=tf.zeros(H), sigma=tf.ones(L))
4 b_1 = Normal(mu=tf.zeros(1), sigma=tf.ones(1))
5
6 x = tf.placeholder(tf.float32, [N, D])
7 y = Bernoulli(logits=tf.matmul(tf.nn.tanh(tf.matmul(x, W_0) + b_0), W_1) + b_1)

Figure 5: Bayesian neural network for classification.

Rezende, D. J., Mohamed, S., Danihelka, I., Gregor, K., and Wierstra, D. (2016). One-shot general-
ization in deep generative models. In International Conference on Machine Learning.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning.

Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods. Springer.

Rudolph, M. R., Ruiz, F. J. R., Mandt, S., and Blei, D. M. (2016). Exponential family embeddings.
In Neural Information Processing Systems.

Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., and Blei, D. M. (2016a). Edward:
A library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787.

Tran, D., Ranganath, R., and Blei, D. M. (2016b). The variational Gaussian process. In International
Conference on Learning Representations.

Wang, C. and Blei, D. M. (2012). Truncation-free online variational inference for Bayesian nonpara-
metric models. In Neural Information Processing Systems, pages 413–421.

Wu, Y., Li, L., Russell, S., and Bodik, R. (2016). Swift: Compiled inference for probabilistic pro-
gramming languages. arXiv preprint arXiv:1606.09242.

A Model Examples

There are many examples available at http://edwardlib.org, including models, inference meth-
ods, and complete scripts. Below we describe several model examples; Appendix B describes an
inference example (stochastic variational inference); Appendix C describes complete scripts.

A.1 Bayesian Neural Network for Classification

A Bayesian neural network is a neural network with a prior distribution on its weights.

Define the likelihood of an observation (xn, yn) with binary label yn ∈ {0, 1} as

p(yn |W0,b0,W1,b1 ; xn) = Bernoulli(yn |NN(xn ; W0,b0,W1,b1)),

where NN is a 2-layer neural network whose weights and biases form the latent variables
W0,b0,W1,b1. Define the prior on the weights and biases to be the standard normal. See Fig-
ure 5. There are N data points, D features, and H hidden units.

A.2 Dirichlet Process Mixture Model

See Figure 6.

7

http://edwardlib.org

1 H = Normal(mu=tf.zeros(D), sigma=tf.ones(D))
2 mu = tf.pack([DirichletProcess(alpha=1.0, base=H) for _ in range(N)])
3 x = Normal(mu=mu, sigma=tf.ones(N))

The essential component defining the DirichletProcess random variable is a stochastic while loop.
We define it below.

1 def dirichlet_process(alpha):
2 def cond(k, beta_k):
3 flip = Bernoulli(p=beta_k)
4 return tf.equal(flip, tf.constant(1))
5
6 def body(k, beta_k):
7 beta_k = beta_k * Beta(a=1.0, b=alpha)
8 return k + 1, beta_k
9

10 k = tf.constant(0)
11 beta_k = Beta(a=1.0, b=alpha)
12 stick_num, stick_beta = tf.while_loop(cond, body, loop_vars=[k, beta_k])
13 return stick_num

Figure 6: Dirichlet process mixture model .

A.3 Latent Dirichlet Allocation

See Figure 7.

φk

θd zd,n wd,n

N
D

K

1 D = 50 # number of documents
2 N = [11502, 213, 1523, 1351, ...] # words per doc
3 K = 10 # number of topics
4 V = 100000 # vocabulary size
5
6 theta = Dirichlet(alpha=tf.zeros([D, K]) + 0.1)
7 phi = Dirichlet(alpha=tf.zeros([K, V]) + 0.05)
8 z = [[0] * N] * D
9 w = [[0] * N] * D

10 for d in range(D):
11 for n in range(N[d]):
12 z[d][n] = Categorical(pi=theta[d, :])
13 w[d][n] = Categorical(pi=phi[z[d][n], :])

Figure 7: Latent Dirichlet allocation (Blei et al., 2003).

A.4 Gaussian Matrix Factorizationn

See Figure 8.

Um

Yn,m

Vn

M N

1 N = 10
2 M = 10
3 K = 5 # latent dimension
4
5 U = Normal(mu=tf.zeros([M, K]), sigma=tf.ones([M, K]))
6 V = Normal(mu=tf.zeros([N, K]), sigma=tf.ones([N, K]))
7 Y = Normal(mu=tf.matmul(U, V, transpose_b=True), sigma=tf.ones([N, M]))

Figure 8: Gaussian matrix factorization.

B Inference Example: Stochastic Variational Inference

In the subgraph setting, we do data subsampling while working with a subgraph of the full model.
This setting is necessary when the data and model do not fit in memory. It is scalable in that both
the algorithm’s computational complexity (per iteration) and memory complexity are independent
of the data set size.

8

For the code, we use the running example, a mixture model described in Figure 3.
1 N = 10000000 # data set size
2 D = 2 # data dimension
3 K = 5 # number of clusters

The model is

p(x, z, β) = p(β)

N∏
n=1

p(zn | β)p(xn | zn, β).

To avoid memory issues, we work on only a subgraph of the model,

p(x, z, β) = p(β)

M∏
m=1

p(zm | β)p(xm | zm, β)

1 M = 128 # mini-batch size
2
3 beta = Normal(mu=tf.zeros([K, D]), sigma=tf.ones([K, D]))
4 z = Categorical(logits=tf.zeros([M, K]))
5 x = Normal(mu=tf.gather(beta, z), sigma=tf.ones([M, D]))

Assume the variational model is

q(z, β) = q(β;λ)

N∏
n=1

q(zn | β; γn),

parameterized by {λ, {γn}}. Again, we work on only a subgraph of the model,

q(z, β) = q(β;λ)

M∏
m=1

q(zm | β; γm).

parameterized by {λ, {γm}}. Importantly, onlyM parameters are stored in memory for {γm} rather
than N .

1 qbeta = Normal(mu=tf.Variable(tf.zeros([K, D])),
2 sigma=tf.nn.softplus(tf.Variable(tf.zeros[K, D])))
3 qz_variables = tf.Variable(tf.zeros([M, K]))
4 qz = Categorical(logits=qz_variables)

We instantiate the inference algorithm to perform inference over β and the subset of z. We use KLqp,
a variational method that minimizes the divergence measure KL(q ‖ p) (Jordan et al., 1999). We
also pass in a TensorFlow placeholder x_ph for the data, so we can change the data at each step.
(Alternatively, batch tensors in TensorFlow can be used.)

1 x_ph = tf.placeholder(tf.float32, [M])
2 inference = ed.KLqp({beta: qbeta, z: qz}, data={x: x_ph})

We initialize the algorithm with the scale argument, so that computation on z and x will be scaled
appropriately. This enables unbiased estimates for stochastic gradients.

1 inference.initialize(scale={x: float(N) / M, z: float(N) / M})

We now run the algorithm, assuming there is a next_batch function which provides the next batch of
data.

1 qz_init = tf.initialize_variables([qz_variables])
2 for _ in range(10000):
3 x_batch = next_batch(size=M)
4 for _ in range(10): # run multiple updates for each batch
5 inference.update(feed_dict={x_ph: x_batch})
6 # reinitialize the local factors
7 qz_init.run()

After each iteration, we reinitialize the parameters for q(z | β;γ); this is because we do inference
on a new set of local variational factors for each batch. This demo readily applies to other stochastic
inference algorithms such as stochastic gradient Langevin dynamics: simply replace qbeta and qz
with Empirical random variables; then call ed.SGLD instead of ed.KLqp.

9

Note that if the data and model fit in memory but you’d still like to perform data subsampling for fast
inference, we recommend not defining subgraphs. You can reify the full model, and simply index
the local variables with a placeholder. The placeholder is fed at runtime to determine which of the
local variables to update at a time. (For more details, see the website’s API.)

C Complete Examples

C.1 Variational Auto-encoder

See Figure 9.

1 import edward as ed
2 import tensorflow as tf
3
4 from edward.models import Bernoulli, Normal
5 from scipy.misc import imsave
6 from tensorflow.contrib import slim
7 from tensorflow.examples.tutorials.mnist import input_data
8
9 M = 100 # batch size during training

10 d = 2 # latent variable dimension
11
12 # Probability model (subgraph)
13 z = Normal(mu=tf.zeros([M, d]), sigma=tf.ones([M, d]))
14 h = slim.fully_connected(z, 256)
15 x = Bernoulli(logits=slim.fully_connected(h, 28 * 28, activation_fn=None))
16
17 # Variational model (subgraph)
18 x_ph = tf.placeholder(tf.float32, [M, 28 * 28])
19 qh = slim.fully_connected(x_ph, 256)
20 qz = Normal(mu=slim.fully_connected(qh, d, activation_fn=None),
21 sigma=slim.fully_connected(qh, d, activation_fn=tf.nn.softplus))
22
23 # Bind p(x, z) and q(z | x) to the same TensorFlow placeholder for x.
24 mnist = input_data.read_data_sets("data/mnist", one_hot=True)
25 data = {x: x_ph}
26
27 inference = ed.KLqp({z: qz}, data)
28 optimizer = tf.train.RMSPropOptimizer(0.01, epsilon=1.0)
29 inference.initialize(optimizer=optimizer)
30
31 tf.initialize_all_variables().run()
32
33 n_epoch = 100
34 n_iter_per_epoch = 1000
35 for _ in range(n_epoch):
36 for _ in range(n_iter_per_epoch):
37 x_train, _ = mnist.train.next_batch(M)
38 info_dict = inference.update(feed_dict={x_ph: x_train})
39
40 # Generate images.
41 imgs = x.value().eval()
42 for m in range(M):
43 imsave("img/%d.png" % m, imgs[m].reshape(28, 28))

Figure 9: Complete script for a vae (Kingma and Welling, 2014) with batch training. It generates
MNIST digits after every 1000 updates.

C.2 Generative Model for Word Embeddings

See Figure 10. This example uses data subsampling (Appendix B). The priors and conditional like-
lihoods are defined only for a minibatch of data. Similarly the variational model only models the
embeddings used in a given minibatch. TensorFlow variables contain the embedding vectors for the
entire vocabulary. TensorFlow placeholders ensure that the correct embedding vectors are used as
variational parameters for a given minibatch.

The Bernoulli variables y_pos and y_neg are fixed to be 1’s and 0’s respectively. They model whether
a word is indeed the target word for a given context window or has been drawn as a negative sam-

10

1 import edward as ed
2 import tensorflow as tf
3
4 from edward.models import Bernoulli, Normal, PointMass
5
6 N = 581238 # number of total words
7 M = 128 # batch size during training
8 K = 100 # number of factors
9 ns = 3 # number of negative samples

10 cs = 4 # context size
11 L = 50000 # vocabulary size
12
13 # Prior over embedding vectors
14 p_rho = Normal(mu=tf.zeros([M, K]),
15 sigma=tf.sqrt(N) * tf.ones([M, K]))
16 n_rho = Normal(mu=tf.zeros([M, ns, K]),
17 sigma=tf.sqrt(N) * tf.ones([M, ns, K]))
18
19 # Prior over context vectors
20 ctx_alphas = Normal(mu=tf.zeros([M, cs, K]),
21 sigma=tf.sqrt(N)*tf.ones([M, cs, K]))
22
23 # Conditional likelihoods
24 ctx_sum = tf.reduce_sum(ctx_alphas, [1])
25 p_eta = tf.expand_dims(tf.reduce_sum(tf.mul(p_rho, ctx_sum), -1),1)
26 n_eta = tf.reduce_sum(n_rho * tf.tile(tf.expand_dims(ctx_sum, 1), [1, ns, 1]), -1)
27 y_pos = Bernoulli(logits=p_eta)
28 y_neg = Bernoulli(logits=n_eta)
29
30 # placeholders for batch training
31 p_idx = tf.placeholder(tf.int32, [M, 1])
32 n_idx = tf.placeholder(tf.int32, [M, ns])
33 ctx_idx = tf.placeholder(tf.int32, [M, cs])
34
35 # Variational parameters (embedding vectors)
36 rho_params = tf.Variable(tf.random_normal([L, K]))
37 alpha_params = tf.Variable(tf.random_normal([L, K]))
38
39 # Variational distribution on embedding vectors
40 q_p_rho = PointMass(params=tf.squeeze(tf.gather(rho_params, p_idx)))
41 q_n_rho = PointMass(params=tf.gather(rho_params, n_idx))
42 q_alpha = PointMass(params=tf.gather(alpha_params, ctx_idx))
43
44 inference = ed.MAP(
45 {p_rho: q_p_rho, n_rho: q_n_rho, ctx_alphas: q_alpha},
46 data={y_pos: tf.ones((M, 1)), y_neg: tf.zeros((M, ns))})
47
48 inference.initialize()
49 tf.initialize_all_variables().run()
50
51 for _ in range(inference.n_iter):
52 targets, windows, negatives = next_batch(M) # a function to generate data
53 info_dict = inference.update(feed_dict={p_idx: targets, ctx_idx: windows, n_idx: negatives})
54 inference.print_progress(info_dict)

Figure 10: Exponential family embedding for binary data (Rudolph et al., 2016). Here, map is used
to maximize the total sum of conditional log-likelihoods and log-priors.

ple. Without regularization (via priors), the objective we optimize is identical to negative sam-
pling.

11

	Introduction
	Compositional Representations for Probabilistic Models
	Example: Variational Auto-encoder
	Stochastic Control Flow and Model Parallelism

	Compositional Representations for Inference
	Inference as Stochastic Graph Optimization
	Representing Classes of Inference
	Composing Inferences

	Model Examples
	Bayesian Neural Network for Classification
	Dirichlet Process Mixture Model
	Latent Dirichlet Allocation
	Gaussian Matrix Factorizationn

	Inference Example: Stochastic Variational Inference
	Complete Examples
	Variational Auto-encoder
	Generative Model for Word Embeddings

