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Abstract

Deep latent Gaussian models (DLGMs) are powerful generative models of high-
dimensional data. DLGMs assume a set of Gaussian latent variables z that are
intimately involved in the process that generates each observation x. To fit DLGMs
using maximum-likelihood estimation, one must somehow compute or approxi-
mate the posterior distribution p(z | x) of these latent z variables given the data.
Typically, this posterior distribution is approximated using variational inference,
but it has been clearly established that the standard naive mean-field approximation
leads to suboptimal results. There are now many papers exploring the merits of
more powerful variational approximations that can be used to fit DLGMs. In
this work, we instead explore the use of Markov chain Monte Carlo (MCMC) to
approximate p(z | x) in DLGMs. While the resulting algorithm loses some of the
computational advantages of variational methods, in theory it should also eliminate
any bias that variational methods introduce into DLGM parameter estimation. By
comparing DLGMs fit using MCMC and variational inference, we can get new
qualitative insights into how that bias manifests itself. In particular, we see that
DLGMs fit with MCMC use all available latent dimensions, whereas DLGMs fit
with variational inference tend to “prune out” less-important latent dimensions.

1 Background

Deep latent Gaussian models (DLGMs; Rezende et al., 2014; Kingma and Welling, 2014) model a
set of i.i.d. vectors x1:N as being drawn from the following generative process:

zn ∼ N (0, I); xn ∼ f(g(zn; θ)), (1)

where f is a distribution with some parameters γ, and those parameters are obtained by passing
zn through a nonlinear function g, which in turn is given by a neural network controlled by some
parameters θ. For example, if the observations x are binary, f might be a Bernoulli distribution with
mean γ; if the observations are real-valued, f might be a normal distribution whose mean is γ. For
simplicity, we will assume that zn is only fed into the bottom layer of the neural network.

Learning in DLGMs consists of finding a set of parameters θ̂ that maximize the marginal likelihood
of the observed data, integrating over all possible z:

θ̂ = arg maxθ
1
N

∑
n log p(xn) = arg maxθ

1
N

∑
n log

∫
zn
p(zn, xn)dzn. (2)

The integral over z is not analytically tractable, so it is usually approximated by a lower bound

L ≡ 1
N

∑
n Eq[log p(xn | zn)] + Eq[log p(zn)

q(zn)
] ≤ 1

N

∑
n log

∫
zn
p(zn, xn)dzn. (3)

q is typically chosen to have some tractable form, often one parameterized by another neural network.
This bound holds for any q, and is tight when q(zn) = p(zn | xn) (Jordan et al., 1999), so the
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Algorithm 1 MCMC-based Generalized Stochastic EM
Initialize z1:N , θ; choose L, ε, η(t), S.
for t in 1:T do

Sample a minibatch S of S indices between 1 and N .
Apply an L-step HMC update with step size ε to each zs|s ∈ S.
Update θ ← θ − η(t)∇θ 1

S

∑
s∈S log p(xs | zs).

end for.

gradient of L with respect to θ should approximate the gradient of log p(x) increasingly well as q(zn)
approaches p(zn | xn).

The quality of the learning signal for θ depends on how well we can approximate the posterior with
q. This is a major motivation for developing more powerful q distributions that remain tractable
(e.g., Rezende and Mohamed, 2015; Tran et al., 2016; Ranganath et al., 2016b; Burda et al., 2016;
Kingma et al., 2016; Ranganath et al., 2016a; Salimans et al., 2015). These approaches make
different tradeoffs, but all retain some amount of bias insofar as their q distributions cannot perfectly
approximate the posterior.

Below, we will explore a largely overlooked1 alternative: Markov chain Monte Carlo, and in particular
Hamiltonian Monte Carlo (HMC; Neal, 2011).

2 MCMC for DLGMs

Algorithm 1 summarizes our proposed approach. The basic idea is to keep N persistent Markov
chains running—one for each latent vector zn. Each iteration, we sample a minibatch of examples
and their corresponding latent variables, apply an MCMC update to the latent variables, and then
apply a gradient update to the model parameters θ. The bias in this procedure depends on how quickly
the Markov chains mix relative to the step size η(t)—as η approaches zero, so does the bias in the
gradient estimates for θ.

We used this procedure to fit a DLGM to a binarized MNIST dataset. The DLGM had 100 latent
dimensions, two fully connected hidden layers with 800 units each, and a final fully connected logistic
layer giving the probability of each pixel being one or 0. For comparison, we also fit a DLGM
using a mean-field inference network with the generative model initialized to the DLGM fit with
MCMC—this allows us to examine what kind of biases the variational approximation introduces
while hopefully avoiding confusing local optima issues.

To determine the most important directions in the latent space of the z variables, we applied PCA to
the following matrix J̄ :

z̃m∈{1,...,M} ∼ N (0, I); Jm ≡ ∂E[x|z̃m]
∂z

∣∣∣
z̃m

; J̄ ≡ 1
M

∑
m Jm. (4)

That is, J̄ is an estimate of the average over z of the Jacobian of the expected value of an observation
x given z. The largest principal components of J̄ correspond to the directions in which, on average, a
small perturbation in z will lead to the largest change in x. Conversely, small principal components
are directions in z space that can be varied widely without affecting the observation.

Figure 1 shows the singular value spectra of the expected Jacobian matrix J̄ for the DLGMs fit with
MCMC and mean-field variational inference. The model fit with variational inference has pruned out
most latent dimensions, consistent with the observations of Burda et al. (2016). The model fit with
MCMC seems to use all available latent dimensions, at least a little.

Figure 2 visualizes what these principal components encode. Each row shows the average reconstruc-
tion

∫
z̃K+1:100

N (z̃K+1:100; 0, I)E[x | z = z̃]; that is, we hold the first K most important components
of z fixed and average over the remaining components. The first 30 components (those kept by the
variational model) seem to encode large-scale structure, while higher-order components encode fine
details and noise. This suggests that some of the blurriness sometimes associated with DLGMs (e.g.,
by Larsen et al., 2015) may be due to variational pruning.

1Note that the approach of Salimans et al. (2015) does use HMC as part of a variational approximation. This
approach still retains some bias, however, since it does not run a Markov chain to convergence.
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Figure 1: Left: Singular value spectrum of expected Jacobian matrix J̄ for the DLGM fit to MNIST
using MCMC. Right: Singular value spectrum of expected Jacobian matrix J̄ for the DLGM fit to
MNIST using mean-field variational inference. The model fit with variational inference has discarded
all but 30 latent components.

Figure 2: Reconstructions of five MNIST digits, holding fixed a varying number K of principal
components. As K increases, the images become clearer.
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