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Abstract

Deep learning techniques have led to massive improvements in recent years, but
large amounts of labeled data are typically required to learn these complex models.
We present a semi-supervised approach for training deep models that combines the
feature learning capabilities of neural networks with the probabilistic modeling of
Gaussian processes and demonstrate that unlabeled data can significantly improve
performance on real-world datasets.

Introduction

The prevailing trend in machine learning is to automatically discover good feature representations
through end-to-end optimization of deep neural networks [1, 2]. However, most tasks where deep
learning has been applied with great success have been characterized by large quantities of labeled
data for supervised learning [3, 4, 5, 6]. Building on the deep kernel learning methods introduced
by Wilson et al. [7], we propose a semi-supervised approach that combines the feature learning
capabilities of deep neural networks with the ability of Gaussian processes to quantify uncertainty.
By simultaneously maximizing the marginal likelihood of labeled data and minimizing the posterior
variance of unlabeled data, large quantities of cheaply collected data can be used for learning.

Deep kernel learning

The deep kernel learning (DKL) model combines the adaptive feature representations of a neural
network with a Gaussian process (GP) by using the learned embeddings as input to a GP kernel [7].
Given input data x ∈ X , a neural network is used to extract feature vectors hθ(x). The DKL model
then models the outputs as

f(x) ∼ GP(µ(hθ(x)), kφ(hθ(x), hθ(x′)))
for some mean function µ(·) and covariance kernel kφ(·, ·), where θ and φ represent the neural
network and GP parameters respectively. For labeled data (XL, y), the model is jointly learned by
maximizing the log marginal likelihood, log p(y | XL, θ, φ) [8].

Semi-supervised deep kernel learning

To incorporate information from unlabeled data, we exploit the fact that the probabilistic model
provides us with a predictive posterior distribution, i.e., it is able to quantify the uncertainty in its
predictions. Instead of maximizing the marginal likelihood of the labeled training data in a purely
supervised fashion, we train a semi-supervised model by minimizing the compound objective

Lsemisup(θ, σ, λ) = −
1

n
log p(y | XL, θ, σ, λ) +

α

m

∑
j:xj∈XU

cov(XU )jj

where n and m are the numbers of labeled and unlabeled examples and α is a weighting constant
controlling the tradeoff between maximizing the likelihood of our observations and minimizing
the posterior variance on unlabeled data. This semi-supervised objective has a regularizing effect,
discouraging the neural net from learning features that do not generalize well to unlabeled data.
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Figure 1: A: Average test RMSE vs. number of labeled examples for UCI Skillcraft dataset averaged
over 10 trials of randomly sampled data. B: Two-dimensional embeddings learned by supervised
DKL model using 50 labeled training examples. Large triangles represent labeled data, while small
circles represent unlabeled data. The colors indicate ground truth for the output variable, which is
treated as unknown for unlabeled data. C: Embeddings learned by semi-supervised DKL model
using the same 50 labeled training examples plus 1000 unlabeled examples.

We evaluate the semi-supervised DKL approach on the Skillcraft dataset from the UCI repository,
a regression task with 18-dimensional features and a real-valued output from 1 to 8 [9]. Fig. 1A
compares the semi-supervised model to several approaches that use only labeled data: stand-alone
neural networks (NN), fixed neural networks with a Gaussian process on top (NN+GP), and DKL
models where the neural network and Gaussian process are trained jointly. Following Wilson et al.
[7], the NN+GP model is initialized with the trained NN parameters, and the DKL model is initialized
from the corresponding trained NN+GP. Our semi-supervised DKL model outperforms the purely
supervised methods when labeled data is limited.

To gain some intuition about how unlabeled data helps learning, we visualize the neural network
embeddings learned by the DKL (Fig. 1B) and semi-supervised DKL models (Fig. 1C). The
semi-supervised DKL model learns a representation in which the unlabeled examples are more
closely clustered around labeled examples. When labeled data is scarce, complex models such as
neural networks are prone to overfitting and learning feature representations that fail to generalize
well to unseen data. By encouraging the learned features to also minimize predictive variance, the
semi-supervised DKL model effectively uses unlabeled examples as additional training data.

Related work

The success of deep neural networks lies in the representative power of deep, but finite, hierarchies
of parameterized basis functions [1, 2]. Conversely, non-parametric Gaussian processes can use
infinitely many fixed basis functions through a covariance kernel that captures structure in the data
[8, 10, 11]. Damianou and Lawrence [12] introduced deep Gaussian processes, which stack GPs by
modeling the outputs of one layer with a GP in the next layer. The deep kernel learning method of
Wilson et al. [7] combines neural networks with the non-parametric flexibility of Gaussian processes,
training the model end-to-end in a supervised setting.

Our semi-supervised learning objective draws inspiration from transductive experimental design,
which chooses informative experiments by seeking data points that are both hard to predict and
informative for the unexplored test data [13]. Other methods based on prediction uncertainty have
also been explored, such as minimum entropy regularization [14, 15], as well as methods that leverage
unsupervised pre-training or stochastic perturbations [16, 17].

Conclusions

Many important problems are challenging in large part because of the limited availability of training
data. In these settings, the ability to learn from unlabeled data is critical. We show that more powerful
hierarchical feature representations can be learned when deep neural networks and Gaussian processes
are jointly trained to optimize a semi-supervised objective that aims to minimize uncertainty over
unlabeled data.
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