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Abstract

Variational auto-encoders (VAE) are scalable and powerful generative models.
However, the choice of the variational posterior determines tractability and flex-
ibility of the VAE. Commonly, latent variables are modeled using the normal
distribution with a diagonal covariance matrix. This results in computational effi-
ciency but typically it is not flexible enough to match the true posterior distribution.
One fashion of enriching the variational posterior distribution is application of
normalizing flows, i.e., a series of invertible transformations to latent variables
with a simple posterior. In this paper, we follow this line of thinking and propose
a volume-preserving flow that uses a series of Householder transformations. We
show empirically on MNIST dataset and histopathology data that the proposed
flow allows to obtain more flexible variational posterior and highly competitive
results comparing to other normalizing flows.

1 Variational Auto-Encoder

Let x be a vector of D observable variables, z ∈ RM a vector of stochastic latent units (variables) and
let p(x, z) be a parametric model of the joint distribution. Given N datapoints X = {x1, . . . ,xN}
we typically aim at maximizing the marginal log-likelihood:

ln p(X) =

N∑
i=1

ln p(xi), (1)

with respect to parameters. This task could be troublesome due to intractability of the marginal
likelihood, e.g., when the model is parameterized by a neural network (NN). To overcome this issue
one can introduce an inference model (an encoder) q(z|x) and optimize the variational lower bound:

ln p(x) ≥ Eq(z|x)[ln p(x|z)]−KL
(
q(z|x)||p(z)

)
, (2)

where p(x|z) is called a decoder and p(z) = N (z|0, I) is the prior. There are various ways
of optimizing this lower bound but for continuous z this could be done efficiently through a re-
parameterization of q(z|x) [9, 15]. Then the architecture is called a variational auto-encoder (VAE).

In practice, the inference model assumes a diagonal covariance matrix, i.e., q(z|x) =
N
(
z|µ(x),diag(σ2(x))

)
, where µ(x) and σ2(x) are parameterized by the NN. However, the

assumption about the diagonal posterior can be insufficient and not flexible enough to match the true
posterior.

2 Improving posterior flexibility using Normalizing Flows

A (finite) normalizing flow, first formulated by [20, 21] and further developed by [14], is a powerful
framework for building flexible posterior distribution by starting with an initial random variable



with a simple distribution for generating z(0) and then applying a series of invertible transformations
f (t), for t = 1, . . . , T . As a result, the last iterate gives a random variable z(T ) that has a more
flexible distribution. Once we choose transformations f (t) for which the Jacobian-determinant can be
computed, we aim at optimizing the following objective:

ln p(x) ≥ Eq(z(0)|x)

[
ln p(x|z(T )) +

T∑
t=1

ln
∣∣∣det ∂f (t)

∂z(t−1)

∣∣∣]−KL
(
q(z(0)|x)||p(z(T ))

)
. (3)

In fact, the normalizing flow can be used to enrich the posterior of the VAE with small or even none
modifications in the architecture of the encoder and the decoder.

There are two main kinds of normalizing flows, namely, general normalizing flows and volume
preserving flows. The difference between these types of flow is in the manner how the Jacobian-
determinant is handled. The general normalizing flows aim at formulating the flow for which the
Jacobian-determinant is relatively easy to compute. On the contrary, the volume-preserving flows
design series of transformations such that the Jacobian-determinant equals 1 while still it allows to
obtain flexible posterior distributions. The reduced computational complexity is the main reason
why volume-preserving flows are so appealing. The question is whether one can propose a series
of transformations for which the Jacobian-determinant is equal one, they are cheap to calculate and
are general enough to model flexible posteriors. In the next subsection we present a new volume-
preserving flow that applies series of Householder transformations that we refer to as the Householder
flow.

3 Householder Flow

3.1 Motivation

In general, any full-covariance matrix Σ can be represented by the eigenvalue decomposition using
eigenvectors and eigenvalues:

Σ = UDU>, (4)
where U is an orthogonal matrix with eigenvectors in columns, D is a diagonal matrix with eigen-
values. In the case of the vanilla VAE, it would be tempting to model the matrix U to obtain a
full-covariance matrix. The procedure would require a linear transformation of a random variable
using an orthogonal matrix U. Since the absolute value of the Jacobian determinant of an orthogonal
matrix is 1, for z(1) = Uz(0) one gets z(1) ∼ N (Uµ,U diag(σ2) U>). If diag(σ2) coincides with
true D, then it would be possible to resemble the true full-covariance function. Hence, the main goal
would be to model the orthogonal matrix of eigenvectors.

Generally, the task of modelling an orthogonal matrix in a principled manner is rather non-trivial.
However, first we notice that any orthogonal matrix can be represented in the following form [2, 19]:
Theorem 1. (The Basis-Kernel Representation of Orthogonal Matrices)
For any M ×M orthogonal matrix U there exist a full-rank M ×K matrix Y (the basis) and a
nonsingular (triangular) K ×K matrix S (the kernel), K ≤M , such that:

U = I−YSY>. (5)

The value K is called the degree of the orthogonal matrix. Further, it can be shown that any
orthogonal matrix of degree K can be expressed using the product of Householder transformations
[2, 19], namely:
Theorem 2. Any orthogonal matrix with the basis acting on the K-dimensional subspace can be
expressed as a product of exactly K Householder transformations:

U = HKHK−1 · · ·H1, (6)

where Hk = I− SkkY·k(Y·k)
>, for k = 1, . . . ,K.

Theoretically, Theorem 2 shows that we can model any orthogonal matrix in a principled fashion
using K Householder transformations. Moreover, the Householder matrix Hk is orthogonal matrix
itself [7]. Therefore, this property and the Theorem 2 put the Householder transformation as a perfect
candidate for formulating a volume-preserving flow that allows to approximate (or even capture) the
true full-covariance matrix.
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3.2 Definition

The Householder transformation is defined as follows. For a given vector z(t−1) the reflection
hyperplane can be defined by a vector (a Householder vector) vt(x) ∈ RM that is orthogonal to the
hyperplane, and the reflection of this point about the hyperplane is [7]:

z(t) =
(
I− 2

vt(x)vt(x)
>

||vt(x)||2
)
z(t−1) (7)

= Ht(x)z
(t−1), (8)

where Ht(x) = I− 2vt(x)vt(x)
>

||vt(x)||2 is called the Householder matrix.

The most important property of Ht(x) is that it is an orthogonal matrix and hence the absolute
value of the Jacobian determinant is equal 1. This fact significantly simplifies the objective (3)
because ln

∣∣∣det∂Ht(x)z
(t−1)

∂z(t−1)

∣∣∣ = 0, for t = 1, . . . , T . Starting from a simple posterior with the

diagonal covariance matrix for z(0), the series of T linear transformations given by (7) defines a new
type of volume-preserving flow that we refer to as the Householder flow (HF). The vectors vt(x),
t = 1, . . . , T , are produced by the encoder network along with means and variances. The idea of
the Householder flow is schematically presented in Figure 1. Once the encoder returns the set of
Householder vectors, the Householder flow requires T linear operations to produce a sample from a
more flexible posterior with (approximate) full-covariance matrix.

(a) encoder network + Householder Flow (b) one step of the Householder Flow

NN HF

x z(0) z(T )

Ht(x)z
(t−1)

z(t−1) z(t)

Figure 1: A schematical representation of the encoder network with the Householder flow. (a) The
general architecture of the VAE+HF: The encoder returns means and variances for the posterior and a
set of Householder vectors that are used to formulate the Householder flow. (b) A single step of the
Householder flow that uses linear Householder transformation. In both figures solid lines correspond
to the encoder network and the dashed lines are additional quantities required by the HF.

4 Related Work

In [14] invertible linear normalizing flows with known Jacobian determinant were proposed. These are
easy to calculate, i.e., the determinant of the Jacobian can be analytically computed, however, many
such transformations are needed to capture high-dimensional dependencies. A different approach
relies on volume-preserving flows, for which the absolute value of Jacobian determinant is equal
1, such as, Non-linear Independent Components Estimation (NICE) [5], Hamiltonian Variational
Inference (HVI) [17] and linear Inverse Autoregressive Flow (linIAF) or its non-linear version (nlIAF)
[10].

The HF is similar in spirit to the linIAF where the linear transformation is also applied but it is the
lower triangular inverse Cholesky matrix with ones on the diagonal instead of the Householder matrix.
Nevertheless, the motivation of the linIAF differs from ours completely.

The Householder transformations (reflections) were also exploited in the context of learning recurrent
neural nets [1]. They were used for modelling unitary weights instead of more flexible variational
posterior, however, these served as a component for representing a matrix of eigenvectors, similarly
to our approach.
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5 Experiments

5.1 MNIST

Set-up In the first experiment we used the MNIST dataset [11] that contains 60,000 training and
10,000 test images of ten handwritten digits (28× 28 pixels in size). From the training set we put
aside 10,000 images for validation and tuning hyper-parameters. We used the binarized dataset as in
[16].

In order to make more reliable comparison to [14, 17], we trained the VAE with 40 stochastic hidden
units and the encoder and decoder were parameterized with two-layered neural networks (300 hidden
units per layer) and the tanh activation function. The length of the HF was T = {1, 2} (VAE+HF
(T=1/2)). For training we utilized ADAM [8] with the mini-batch size equal 100 and one example
for estimating the expected value. The learning rate was set according to the validation set. The
maximum number of epochs was 1500 and early-stopping with a look-ahead of 100 epochs was
applied. We used either the warm-up [3, 18] for first 200 epochs or free-bits constraint [10] with
λ ∈ {0.25, 0.5}, which was determined according to the validation log-probabilities. We initialized
weights according to [6].

We compared our approach to linear normalizing flow (VAE+NF) [14], linIAF but with the VAE
parameterized by the convolutional network with ResNet blocks (convVAE+linIAF) and its non-linear
version (convVAE+nlIAF) [10], and finite volume-preserving flows: NICE (VAE+NICE) [5], HVI
(VAE+HVI) [17]. When appropriate, the length of a flow T is given. Additionally, we provide results
for the HVI with the VAE parameterized using convolutional networks (convVAE+HVI) [17] and the
VAE (one and two stochastic hidden layers) with Variational Gaussian Process (VAE(1/2hl)+VGP).
The methods were compared according to the lower bound of marginal log-likelihood measured on
the test set.

Table 1: Comparison of the lower bound of
marginal log-likelihood measured in nats of the
digits in the MNIST test set. For first three meth-
ods the experiment was repeated 3 times.

Method ≤ ln p(x)
VAE −93.9± 0.1
VAE+HF(T=1) −80.5± 0.3
VAE+HF(T=2) −79.5± 0.2
VAE+NF (T=10) [14] −87.5
VAE+NF (T=80) [14] −85.1
VAE+NICE (T=10) [5] −88.6
VAE+NICE (T=80) [5] −87.2
VAE+HVI (T=1) [17] −91.7
VAE+HVI (T=8) [17] −88.3
convVAE+HVI (T=16) [17] −84.1
convVAE+linIAF [10] −84.1± 0.1
convVAE+nlIAF [10] −80.8± 0.1
VAE(1hl)+VGP [22] −84.8
VAE(2hl)+VGP [22] −81.3
DRAW+VGP [22] −79.9

VAE VAE+HF(T=1) VAE+HF(T=2)
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Figure 2: Detailed results for VAE, VAE+HF
(T=1) and VAE+HF (T=2). KL denotes the part
of ELBO associated with the Kullback-Leibler
Divergence and RE correposonds to the recon-
struction error (the expected value of the decoder).
The numbers represent negative values of KL and
RE.

Discussion The results presented in Table 1 reveal that the proposed flow outperforms other
normalizing flows. This outcome is especially interesting since our approach can be easily parallelized
and sampling from the variational posterior requires only application of linear transformations, thus,
the HF is reasonably cheap computationally. In our current implementation1 run on GeForce GTX
960M, the wall-clock time for the VAE is about 0.33ms per mini-batch while for the VAE+HF it is
about 0.38ms and 0.42ms per mini-batch for T equal 1 and 2, respectively. The average number of
epochs until convergence (i.e., excluding the early-stopping) for VAE was 1006 and for VAE+HF
with T equal 1 and 2 it was 1042 and 699, respectively. Moreover, in our approach we need to

1https://github.com/jmtomczak
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store only T ×M more parameters comparing to the vanilla VAE while, e.g., the VAE+linIAF and
VAE+NF requires M×(M−1)

2 and O(T ×M) more parameters, respectively. All these remarks are in
favor of the proposed flow.

In order to get some insight into the behavior of the HF we also examined the values of components
of the training objective (see Figure 2). First, the application of the HF helps the VAE to better model
data (lower reconstruction error). Second, the HF gives higher flexibility of the posterior because
the approximation of the orthogonal matrix allows the initial posterior to model eigenvalues instead
of the whole information about the true posterior, which results in smaller Kullback-Leibler penalty
(i.e., the variances do not need to model whole information about the true posterior distribution).

We also examined the two-dimensional latent space trained using the vanilla VAE and the VAE+HF
(see Figure 3). In case of the vanilla VAE there is a part of the latent space where the generations do
not represent digits (see upper right corner in Figure 3(a)). This issue is alleviated by the VAE+HF
(T=1), however, the most interesting latent representation is obtained by applying two Householder
transformations (see Figure 3(b) and (c), respectively).

(c) VAE+HF (T=2)(b) VAE+HF (T=1)

(a) VAE

Figure 3: Visualization of the two-dimensional latent space of a generative model for (a) the vanilla
VAE, and the VAE+HF with (b) T=1 and (c) T=2.

5.2 Histopathology data

Data preparation In the second experiment we applied the VAE and the VAE+HF to a more
challenging problem of grayscale histopathology data. We prepared a dataset basing on histopatho-
logical images freely available on-line2. We selected 16 patients3 and each histopathological image
represented a bone marrow biopsy. Diagnoses of the chosen cases were associated with different
kinds of cancer (e.g., lymphoma, leukemia) or anemia. All images were taken using HE, 40×, and

2http://www.enjoypath.com/
3Patient numbers: 272, 274, 283, 289, 290, 291, 292, 295, 297, 298, 299.
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each image was of size 336× 448. The original RGB representation was transformed to grayscale4.
Further, we divided each image into small patches of size 28× 28 (see Figure 4 for exemplary image
patches). Eventually, we picked 10 patients for training, 3 patients for validation and 3 patients for
testing, which resulted in 6,800 training images, 2,000 validation images and 2,000 test images. The
selection of patients was performed in such fashion that each dataset contained representative images
with different diagnoses and amount of fat.

Figure 4: Selected image patches from the prepared histopathological data.

Method ≤ ln p(x)
VAE 1033.33± 2.14
VAE+HF (T=1) 1041.13± 1.72
VAE+HF (T=2) 1032.29± 2.13

Table 2: Comparison of the lower bound of
marginal log-likelihood measured in nats of the
image patches in the Histopathology test set. The
experiment was repeated 5 times.

Set-up We used the same architecture of the
VAE and the same training procedure as in
the previous experiment. Since the data are
grayscale, we modeled data using normal dis-
tribution instead of the Bernoulli distribution
with means constrained to [0, 1] by applying
the sigmoid function. The only difference
in the training procedure was that we per-
formed model selection for free-bits with λ ∈
{0.25, 0.5, 0.75, 1.0, 1.5, 2.0}. We compared
the vanilla VAE with the VAE+HF (T=1,2).

Discussion The results presented in Table 2
confirmed findings of the previous experiment that the application of the HF helps in obtaining
more flexible posterior, however, a series of two Householder transformations performed similarly
to the vanilla VAE. A possible explanation for this effect is that the application of two Householder
transformations resulted in larger and more expressive model that was harder to learn using a relatively
small sample size.

6 Conclusion

In this paper, we proposed a new volume-preserving flow using Householder transformations. Our
idea relies on the observation that the true full-covariance matrix can be decomposed to the diagonal
matrix with eigenvalues on the diagonal and the orthogonal matrix of eigenvalues that could be further
modeled using a series of Householder transformations. The obtained results in the experimental
studies reveal that fully connected VAEs with Householder flows could perform better than their
convolutional counterparts. This makes the HF a very promising direction for further investigation.
In the future, we aim at using the outlined flow in recently proposed extensions of the variational
inference, e.g., importance weighted VAE [4], Rényi Divergence for VAE [12] and Ladder VAE [18].
Moreover, we believe that the proposed flow can be beneficiary in modelling natural and medical
images, where flexibility of the posterior is crucial [13, 18]. We leave investigating this issue for
future research.

4A pixel’s value was determined according to the formula: 0.299×R+ 0.587×G+ 0.114×B.
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