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Abstract

When performing global optimisation, the number of samples required to survey
a solution space grows exponentially with the dimensionality of the space. This
curse of dimensionality limits the use of global optimisation methods in high-
dimensional problems. We propose to address these limitations through transfer
learning: by allowing an algorithm to learn across multiple tasks, it should address
new problems more efficiently (i.e., requiring fewer samples), thereby alleviating
the curse of dimensionality for these new problems. In more details, we extend
surrogate-based optimisation to learn a function approximation for both the design
variables (the solution space of a single task) and the dimensions over which tasks
vary (i.e., to interpolate between the solution spaces of different tasks). We use
a Bayesian deep neural network for function approximation and test four meth-
ods to quantify uncertainty in the network’s output: (1) the Euclidean distance
between sample points, (2) the Kriging method, (3) an ensemble of networks,
and (4) Monte-Carlo dropout. These uncertainty measures are used to solve the
exploration-exploitation dilemma, allowing efficient global exploration of the so-
lution space. We find that the three first methods provide a useful measure of
uncertainty for exploration. Monte-Carlo dropout, however, yields a measure that
is less affected by the density of sample points in the solution space, and it is thus
less well suited to guide exploration. We test our algorithm on one-dimensional
optimisation problems that are related along a second dimension. As learning pro-
gresses, the interpolation learned by the network allows the optimisation method
to concentrate its search on promising regions of the solution spaces of new prob-
lems. The optimisation then requires fewer samples to converge to the optima. In
future work, we intend to examine whether this approach can be used to circum-
vent the curse of dimensionality in higher-dimensional problems.
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In the context of optimisation, searching for globally optimal solutions in high-dimensional spaces
is challenging. The number of samples required to survey a solution space grows exponentially with
the dimensionality of the space, a problem known as the curse of dimensionality. This curse limits
global exploration to relatively small solution spaces. Some gradient-based methods scale well with
dimensionality (for instance, the adjoint state method), but these methods converge to local optima.
Current optimisation algorithms are therefore limited to either searching low-dimensional spaces for
global optima or large spaces for local optima.

We propose to address these limitations through transfer learning. In short, we make use of a deep
neural network to interpolate between the solution spaces of related optimisation problems. Based
on this interpolation, the algorithm concentrates its search on promising regions of the solution space
when faced with a new optimisation problem. The algorithm then requires fewer samples to find the
optimum, which could be used to circumvent the curse of dimensionality. In this extended abstract,
we present preliminary results we obtained with this approach.

In more details, our approach is an extension of surrogate-based optimisation. Surrogate-based
optimisation is a metaheuristic that learns an approximation for the function to be optimised and
explores the design space according to this surrogate function. This method typically makes use
of probabilistic estimates to quantify uncertainty in the value of the surrogate function to solve the
exploration-exploitation dilemma. That is, in order to efficiently explore the solution space, new
sample points are taken so as to balance high uncertainty in the function (exploration) and high
function value (exploitation). This method allows for the global exploration of a space while usually
requiring fewer function evaluations than other algorithms.

We extend this method to learn function approximations over multiple related optimisation prob-
lems. Specifically, we increase the dimensionality of the surrogate model to include the dimensions
over which the different problem instances vary. For example, consider a one-dimensional problem
consisting of optimising the length of the wing of an aircraft. Furthermore, assume that the problem
is repeated for multiple aircrafts flying at different speeds (e.g., a commercial plane, a propeller
plane, etc.). In traditional surrogate-based optimisation, each problem is treated separately: a dis-
tinct one-dimensional approximation of the wing length value function is learned for every plane. In
the present algorithm, we extend the dimensionality of the surrogate model to include the variables
over which the problem instances differ (in this case, the flying speed). In the current example,
the regressor models how both the wing length and the flying speed affect the value function. For a
problem at new flying speed, the regressor interpolates the value of the function from prior problems,
thereby exhibiting a knowledge of the solution space before any samples are taken.

Surrogate-based optimisation relies on probabilistic regression methods to learn an approximation
of the target function and compute uncertainty in this approximation. In this work, we explore the
use of a deep neural network for function approximation. We compare four methods to quantify un-
certainty in the network’s output: (1) the Euclidean distance between sample points, (2) the Kriging
method [1]], (3) an ensemble of networks [2]], and (4) Monte-Carlo dropout [3] (see Fig. E]) We find
that the Euclidean distance, the Kriging, and the ensemble of networks methods all provide useful
measures of uncertainty to solve the exploration-exploitation dilemma (high uncertainty away from
sample points). On the other hand, Monte-Carlo dropout provides high uncertainty estimates where
the function exhibits large fluctuations in its value, with less regard to the density of sample points.
This method therefore appears less well suited to guide the exploration of a space. The ensemble of
networks method is by far the less computationally efficient; simple measures (such as the Euclidean
distance between sample points) provide comparable performances while being at least an order of
magnitude faster to compute.

We test our learning algorithm on a 1-dimensional artificial optimisation problem that may be under-
stood as the aircraft wing-length problem presented above (Fig.[2). We find that the neural network
regressor is able to generalise between optimisation problems, leading to a progressive decrease in
the number of samples required to find the function’s optimum . These results indicate that, in a
simple case, learning from prior problems can improve the convergence of optimisation methods.
The question remains open as whether this approach can be scaled up and used to circumvent the
curse of dimensionality in real-world scenarios.
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Figure 1: Uncertainty quantification. We compare four methods to quantify uncertainty in the output of
the neural network. We use these measure of uncertainty to explore the solution space of a 1-dimensional
optimisation problem. For each method, we report the number of samples required to reach the function’s
optimum and the wall clock run time.
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Figure 2: Learning to optimise. Preliminary results obtained by the algorithm on artificial data. The op-
timisation problem has only one design variable (“wing length”); the problem instances vary along a second
dimension (“flying speed”). The blue surface represents the true value function, the green surfaces the ap-
proximation learned by the network, the blue traces the optimisations solved for different flying speeds, and
the orange points samples of the value function taken for the current problem. As learning progresses, the
algorithm requires fewer samples to find the optimum.
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