
A history of Bayesian neural networks

Zoubin Ghahramani∗†‡

∗University of Cambridge, UK
†Alan Turing Institute, London, UK

‡Uber AI Labs, USA

zoubin@eng.cam.ac.uk

http://mlg.eng.cam.ac.uk/zoubin/

NIPS 2016 Bayesian Deep Learning

Uber AI Labs is hiring: jobs@geometric.ai

DEDICATION

to my friend and colleague David MacKay:

Zoubin Ghahramani 2 / 39

I’m a NIPS old-timer, apparently...

...so now I give talks about history.

Zoubin Ghahramani 3 / 39

BACK IN THE 1980S

There was a huge wave of excitement when Boltzmann
machines were published in 1985, the backprop paper came out
in 1986, and the PDP volumes appeared in 1987.

This field also used to be called Connectionism and NIPS was
its main conference (launched in 1987).

Zoubin Ghahramani 4 / 39

WHAT IS A NEURAL NETWORK?

inputs

outputs

x

y

weights

hidden
units

weights

Neural network is a parameterized function
Data: D = {(x(n), y(n))}N

n=1 = (X, y)
Parameters θ are weights of neural net.

Feedforward neural nets model p(y(n)|x(n),θ)
as a nonlinear function of θ and x, e.g.:

p(y(n) = 1|x(n),θ) = σ(
∑

i

θi x(n)i)

Multilayer / deep neural networks model the overall function as a
composition of functions (layers), e.g.:

y(n) =
∑

j

θ
(2)
j σ(

∑

i

θ
(1)
ji x(n)i) + ε(n)

Usually trained to maximise likelihood (or penalised likelihood) using
variants of stochastic gradient descent (SGD) optimisation.

Zoubin Ghahramani 5 / 39

DEEP LEARNING

Deep learning systems are neural network models similar to
those popular in the ’80s and ’90s, with:

I some architectural and algorithmic innovations (e.g. many
layers, ReLUs, better initialisation and learning rates, dropout,
LSTMs, ...)

I vastly larger data sets (web-scale)

I vastly larger-scale compute resources (GPU, cloud)

I much better software tools (Theano, Torch, TensorFlow)

I vastly increased industry investment and media hype

figure from http://www.andreykurenkov.com/Zoubin Ghahramani 6 / 39

LIMITATIONS OF DEEP LEARNING

Neural networks and deep learning systems give amazing
performance on many benchmark tasks, but they are generally:

I very data hungry (e.g. often millions of examples)
I very compute-intensive to train and deploy (cloud GPU

resources)
I poor at representing uncertainty
I easily fooled by adversarial examples
I finicky to optimise: non-convex + choice of architecture,

learning procedure, initialisation, etc, require expert
knowledge and experimentation

I uninterpretable black-boxes, lacking in trasparency,
difficult to trust

Zoubin Ghahramani 7 / 39

WHAT DO I MEAN BY BEING BAYESIAN?

Dealing with all sources of parameter uncertainty
Also potentially dealing with structure uncertainty

inputs

outputs

x

y

weights

hidden
units

weights

Feedforward neural nets model p(y(n)|x(n),θ)
Parameters θ are weights of neural net.

Structure is the choice of architecture,
number of hidden units and layers, choice of
activation functions, etc.

Zoubin Ghahramani 8 / 39

BAYES RULE

P(hypothesis|data) =
P(hypothesis)P(data|hypothesis)∑

h P(h)P(data|h)

I Bayes rule tells us how to do inference
about hypotheses (uncertain quantities)
from data (measured quantities).

I Learning and prediction can be seen as
forms of inference.

Reverend Thomas Bayes (1702-1761)

Zoubin Ghahramani 9 / 39

ONE SLIDE ON BAYESIAN MACHINE LEARNING

Everything follows from two simple rules:
Sum rule: P(x) =

∑
y P(x, y)

Product rule: P(x, y) = P(x)P(y|x)

Learning:

P(θ|D,m) =
P(D|θ,m)P(θ|m)

P(D|m)

P(D|θ,m) likelihood of parameters θ in model m
P(θ|m) prior probability of θ
P(θ|D,m) posterior of θ given data D

Prediction:
P(x|D,m) =

∫
P(x|θ,D,m)P(θ|D,m)dθ

Model Comparison:

P(m|D) =
P(D|m)P(m)

P(D)
Zoubin Ghahramani 10 / 39

WHY SHOULD WE CARE?

Calibrated model and prediction uncertainty: getting
systems that know when they don’t know.

Automatic model complexity control and structure learning
(Bayesian Occam’s Razor)

Figure from Yarin Gal’s thesis “Uncertainty in Deep Learning” (2016)

Zoubin Ghahramani 11 / 39

A NOTE ON MODELS VS ALGORITHMS

In early NIPS there was an "Algorithms and Architectures" track

Models: Algorithms
convnets Stochastic Gradient Descent
LDA Conjugate-gradients
RNNs MCMC
HMMs Variational Bayes and SVI
Boltzmann machines SGLD
State-space models Belief propagation, EP
Gaussian processes ...

There are algorithms that target finding a parameter optimum, θ∗ and
algorithms that target inferring the posterior p(θ|D)

Often these are not so different

Let’s be clear: “Bayesian” belongs in the Algorithms category, not
the Models category. Any well defined model can be treated in a
Bayesian manner.

Zoubin Ghahramani 12 / 39

BAYESIAN NEURAL NETWORKS

inputs

outputs

x

y

weights

hidden
units

weights
Bayesian neural network

Data: D = {(x(n), y(n))}N
n=1 = (X, y)

Parameters θ are weights of neural net

prior p(θ|α)

posterior p(θ|α,D) ∝ p(y|X,θ)p(θ|α)

prediction p(y′|D, x′,α) =
∫

p(y′|x′,θ)p(θ|D,α) dθ

Zoubin Ghahramani 13 / 39

EARLY HISTORY OF BAYESIAN NEURAL NETWOKS

Complex Systems 1 (1987) 877-922

Large Automatic Learning, Rule Extraction, and
Generalization

John Denker
Daniel Schwartz
Ben W ittner
Sara Solla

Richa rd Howard
Lawrence Jacke l

AT&T Bell Laboratories. Holmdel, NJ 07733, USA

John Hopfield
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

and
California Insti tute of Technology, Pasadena, CA 91125, USA

Abstract. Since an tiquity, man has dreamed of building a de vice
that would "learn from examples" 1 "form generalizations", and "dis-
cover t he rules" behind patt ern s in t he data. Recent work has shown
that a high ly connected , layered networ k of simple an alog processing
element s can be astonishingly successful at this, in some cases . In
ord er to be precise about what has been observed, we give defini t ions
of memorization, generalization , and rule ex traction.

T he most im portant part of this paper proposes a way to measure
th e ent ropy or information content of a learning task and the effi ciency
wit h which a network ext racts informat ion from the dat a.

We also a rgue that the way in which the ne tworks ca n compactly
represent a wid e class of Boolean (an d othe r) functi ons is analogous
to t he way in which polynomials or other famili es of functions can be
"curve fit" to gene ral data; specifically, they ex tend the domain, and
average noisy data.. Alas , findi ng a suitable rep rese ntation is gener-
all y an ill-posed and ill-cond itio ned problem. Even when the problem
has bee n " regularized", what rem ain s is a difficult combinatoria l op-
t imizatio n problem.

Whe n a network is given mo re resou rces than the mi nimum needed
to solve a given t ask , the symmetric, low-order , local solut ions that
hum an s seem to pre fer are not the ones that the network chooses from
th e vast number of solut ions avai lable; ind eed , th e generalized delt a
method and similar learning procedures do not usually hold t he "hu-
man " solut ions stable against perturbations. Fortuna tely, the re are

© 1987 Comp lex Systems Publications, Inc.

904 Denker, Schwartz, Wittn er, Solla, Howard, Jackel, and Hopfield

We remind th e read er that one is not allowed to sea rch W space to find
th e "correct" rule extract ing network. That cannot be done without using
data from the testing set X I which defeats the purpose, by definition. That
would be like betting on the winning horse after th e face is over . We are
only allowed to play th e prohabilities in W space.

14 .2 Derivation

Th e task of choosing a probability distribution in W space is a bit tri cky. Th e
choice depends on just what method is used for "lea rning" , i.e. for searching
W space. Fort unately, the exact form of the distribut ion is not important for
our argument. You could, for ins tance, use a probability den sity proportional
to elWl/w, for some "radius'! w. We will for most purposes use a distribut ion
th at is uniform inside a hypercubical volume (won a side) and zero elsewhere.
We choose w to be big enough to enclose reasonable weight values, but not
too much higger than that.

We can map weigh t space on to function space as follows: for each con-
figurat ion of weights, W, build a network with those weights. Present it all
possible binary inputs. Observe th e corres ponding outputs, and convert to
binary. This mapping associates a definite t ruth table , i.e. a defin it e Boolean
functi on , with each point in W space. To say it the other way, t he inverse
image of a function is a region in weight space.

By integrating over weight space, we can ass ign a probability Pi to each
function. Ifw is large enough, and if there are enough hidden uni ts (H ex 2N) ,

the re will be non -zero probability ass igned to every function , acco rding to
th e discussion in sect ion 5. On the other hand , we are par ticular ly interested
in the case where th ere a re very few hidden un its , perhaps H ex N 2 or N 3 •

In th at case, we expect many functions to have zero probability.
It is int eresting to consider the quantity we ca ll the "funct iona l ent ropy",

namely

S = L - P;log Pi
ieF

(14.1)

where F is the set of a ll functions. All logarithms in this paper ar e base 2, so
ent ropy is measured in bits. It has its maximal value when aU functions are
equally likely, in which case S = 2N . IT some functions are less likely than
others (or ru led out completely), the value of 8 is reduced.

We define 80 to be the initial value of 8 , measured before any training
has taken place. A large So means that the network is capable of solving a
large class of pro blems; a small So means th at the architecture has restri cted
th e class of prob lems th at thi s network can handle.

Now we get to use th e t raining data M. Th e tr aining data appl ies dir ectl y
to funct ion space, bu t we can use the mapping to "black out" the regions of
W space t ha t are (inverse images of funct ions that ar e) incon sistent with the
t ra ining data. We can also define a reduced functional ent ropy,

p. 904 hints at Bayesian integration over network parameters
I John Denker, Daniel Schwartz, Ben Wittner, Sara Solla, Richard

Howard, Lawrence Jackel, and John Hopfield. Large automatic
learning, rule extraction, and generalization. Complex Systems,
1(5):877-922, 1987.

Zoubin Ghahramani 14 / 39

EARLY HISTORY OF BAYESIAN NEURAL NETWOKS

I Naftali Tishby, Esther Levin, and Sara A Solla. Consistent
inference of probabilities in layered networks: Predictions and
generalizations. In IJCNN, 1989.

As an example, consider the case of a quadratic error function in
the range Y, with a uniform distribution in the domain X,
S(x,y 1 o)=(y -Ner (x I In that case, the consistent
p(y I x , 0) is a Gaussian distribution,

p (~ 1 1 , ~) = (2 x $) - ~ e x p [- (~ - ~ e t (x I 0)) ~ / (2 $) 1 ,

and 8=1/(2&), ; (p) = g , while e=&, all independent of

the network w.

2.2 The Gibbs distribution

We henceforth consider the sample input-output pairs to be
random samples from the distribution P(s). When the network
configuration, a, is given we can assign the likelihood (3) that
these samples, x("'), are related through the network o, i.e.
xi E Net(o), as

P (x ' ") I o) = ; [p (a i I o) = - e x p [- p z e (z i 1 lo)] , (7)

i = l 2" i=l

using (5).

The conditional distribution (7) can now be inverted to induce a
distribution on the network configuration space, W, given the set
of input-output pairs x("'), using Bayes formula

where p") is a nonsingular prior distribution on the
configuration space.

By writing eq. (8) directly in terms of the error function,
E(x'") I a), we arrive at the "Gibbs canonical distribution" on
the ensemble of networks

where

~(m)= jdo p(O)(w) e x p [- p P) (o) I , (9b)

is the "error partition function" and is the weighted accessible

volume in configuration space, while P) (o)=z e (xi 1 0) is

the total error on that set of points for the given 0. Equation (9)
has a clear intuitive meaning as the distribution in W, @er

training on the rn samples x('"), where the probability of each
point, o, is reduced exponentially according to the error of the
network on that set. Though this distribution may appear
unlikely for some training processes, it is very natural for
stochastic algorithms, such as simulated annealing,17] which

W

i =I

essentially implement such a Gibbs distribution in configuration
space. This is the only consistent distribution on W , in the sense
that it corresponds correctly to the error minimization process.

In these terms, training on an additional independent sample
x,+1, is equivalent to multiplying the previous distribution p'")
by the factor exp(-e(x,+l 1 a)) and renormalizing the
distribution, i.e.

Thus by training we reduce the accessible volume in
configuration space, or equivalently, increase the "ensemble fiee
energy" -1ogQ'"' monotonically with the training size m. Note
that the only parameter in the post-training distribution, p@)(o),
is p, or equivalently the average training error

which we control directly in the training process. The
ensemble-variance of the training error is determined from the
error itself through

-, a<E> - @logn - - - < (E - < E >) 2 > < o . (12)
ap a s2

2.3 Information gain and Entropy

The natural measure of the "information gain" during the
training process is given in terms of the ensemble entropy,
defined relative to the prior distribution (Kullback-Leibler
distance[81), as

giving the familiar (thermodynamic) relation

Information is thus gained by reducing the accessible
configuration volume, Qcm) , as well as by reducing the training
error <E(") >. Only in the extreme cases, when the final training
error vanishes or when the sensitivity, @, is zero, the entropy is

just the logarithm of the accessible configuration volume.
Equation (14) provides us with another meaning for the
parameter p as a Lagrange multiplier attached to the constrained
average training error <E("'>, during minimization of the
entropy (13). The distribution (9) is thus the distribution with the
minimal relative entropy, (13), subject to the average training
error, <E"')>, as a constraint. Since the relative entropy is

11-405

invariant with respect to coordinate transformations, it is equal to
the the relative entropy defined in the function-space.['] Notice
that the entropy, as a Legendre transformation of the free energy
-log!& is a function of only the training error <E> and we
have

The prediction error, defined as g(")(x)=-logp(")(x) is
expressed in terms of the training "free energies"

g (") (K) = -log Qcm+l) (x) + lOgQ(") -t log z , (18)

giving a thermodynamic meaning of the ensemble free energy
difference to the generalization measure -- --p . as

a c E > G(") log Qt") - log fi'"'') +logz . (19)

3. Predictions and generalization

3.1 The prediction probability

3.2 Training by minimizing prediction errors

Though the average prediction error, G'"', cannot be
calculated directly in a simple way, we can bound it between

w e are now ready to describe the generalization ability of
the network in terms of the training statistical quantities. Given
a network trained on m points, x("), the question is how well

two measurable quantities. Using the positivity of the relative
entropies

does it generalize to other points related through F? The way to

trained on x@"", can predict another independent input-output

I p(m+1) (0) log P + l) (w) do 3 ;

jp("'(w)log p'"'(w) do=,

W P'"' (0)

W $"+I) (w)

answer this question is to estimate the probability that a network,

pair, x with high probability. This "honest-prediction'' probability
can now be calculated directly, using Eqs. (9) and (5) we obtain

Thus the average prediction error for the point x is bounded by
its average pre- and post-training errors, up to a constant. The
sum over the pre-training errors, during the training process since p(") (0) is the probability of the network w after training

on the m samples, while p (x I w) is the probability that this

network agrees with the new pair x.
1 -1 1 T - E<c(x,)>p"l) 2 -E-logp(')(x)z, (21)

t = l T I P

To measure the generalization ability we must correctly predict a
large sample of independent points, x (~) , distributed according to
p. Good generalization ability i s then measured by the value of
the joint prediction distribution

(16)
I=1

Using similar arguments to those that led to eq. (3), we can
conclude that an optimal additive generalization score must be
proportional to

is an upper bound on the desired generalization score, and can be
used as a practical generalization ability test. By exchanging the
averaging over the network ensemble with the summation over
the training set, we get an effective bound, e''), on the
generalization score from the training samples, x(~), alone

where the ensemble averaging is approximated by randomly
selecting the initial training points, c&,, for each OIm IT-1.

1 T

,=I
-1 T

G(") - E g(")(x,)
4. Example: architecture selection for the contiguity

= ~ l o g n p (m ' (X r) T ~ - I P (X) l o g p (m) (~) d ~ , (17) problem
f =1

To demonstrate the utility of the average prediction error
for determining a sufficient size of the training set, as well as
selecting the optimal architecture of the network, we focus on a
simple boolean mapping known as the 'clumps' or contiguity

For binary patterns of 10 bits, 792 of the 1024
patterns contain 2 or 3 continuous blocks of ones, or 'clumps',
separated by zeros. The boolean function that separates this set

which, by the Gibbs inequality, is always greater than the
entropy of the distribution p

2 - j p (x) l o g P (x) d x .

That is, the maximal generalization ability is obtained if, and
only if, the prediction probability p(") = p, as expected.

11-406

Zoubin Ghahramani 15 / 39

EARLY HISTORY OF BAYESIAN NEURAL NETWOKS

I John Denker and Yann LeCun. Transforming neural-net output
levels to probability distributions. In NIPS 3, 1991.

856 Denker and leCun

2 Output Distribution for a Particular Input

The purpose of this section is to discuss the effect that limitations in the quantity
and/or quality oftraining data have on the reliability of neural-net outputs. Only an
outline of the argument can be presented here; details of the calculation can be found
in (Denker and leCun, 1990). This section does not use the ideas developed in the
previous section; the two lines of thought will converge in section 3. The calculation
proceeds in two steps: (1) to calculate the range of weight values consistent with the
training data, and then (2) to calculate the sensitivity of the output to uncertainty in
weight space. The result is a network that not only produces a "best guess" output,
but also an "error bar" indicating the confidence interval around that output.

The best formulation of the problem is to imagine that the input-output relation
of the network is given by a probability distribution P(O, I) [rather than the usual
function 0 = f(I)] where I and 0 represent the input vector and output vec-
tor respectively. For any specific input pattern, we get a probability distribution
POl(OII), which can be thought of as a histogram describing the probability of
various output values.

Even for a definite input I, the output will be probabilistic, because there is never
enough information in the training set to determine the precise value of the weight
vector W. Typically there are non-trivial error bars on the training data. Even when
the training data is absolutely noise-free (e.g. when it is generated by a mathematical
function on a discrete input space (Denker et al., 1987)) the output can still be
uncertain if the network is underdetermined; the uncertainty arises from lack of
data quantity, not quality. In the real world one is faced with both problems: less
than enough data to (over) determine the network, and less than complete confidence
in the data that does exist.
We assume we have a handy method (e.g. back-prop) for finding a (local) minimum
W of the loss function E(W). A second-order Taylor expansion should be valid in
the vicinity of W. Since the loss function E is an additive function of training data,
and since probabilities are multiplicative, it is not surprising that the likelihood of a
weight configuration is an exponential function of the loss (Tishby, Levin and SoHa,
1989). Therefore the probability can be modelled locally as a multidimensional
gaussian centered at W; to a reasonable (Denker and leCun, 1990) approximation
the probability is proportional to:

(1)
i

where h is the second derivative of the loss (the Hessian), f3 is a scale factor that
determines our overall confidence in the training data, and po expresses any infor-
mation we have about prior probabilities. The sums run over the dimensions of
parameter space. The width of this gaussian describes the range of networks in the
ensemble that are reasonably consistent with the training data.

Because we have a probability distribution on W, the expression 0 = fw (1) gives
a probability distribution on outputs 0, even for fixed inputs I. We find that the
most probable output () corresponds to the most probable parameters W. This
unsurprising result indicates that we are on the right track.

I Wray L Buntine and Andreas S Weigend. Bayesian
back-propagation. Complex Systems, 5(6):603-643, 1991.

Zoubin Ghahramani 16 / 39

GOLDEN ERA OF BAYESIAN NEURAL NETWOKS

I David JC MacKay. Neural Computation, 4(3):448-472, 1992:
Communicated by David Haussler

A Practical Bayesian Framework for Backpropagation
Networks

David J. C. MacKay’
Computation and Neural Systems, California lnstitute of Technology 139-74,
Pasadena, C A 91125 USA

A quantitative and practical Bayesian framework is described for learn-
ing of mappings in feedforward networks. The framework makes
possible (1) objective comparisons between solutions using alternative
network architectures, (2) objective stopping rules for network prun-
ing or growing procedures, (3) objective choice of magnitude and type
of weight decay terms or additive regularizers (for penalizing large
weights, etc.), (4) a measure of the effective number of well-determined
parameters in a model, (5) quantified estimates of the error bars on net-
work parameters and on network output, and (6) objective comparisons
with alternative learning and interpolation models such as splines and
radial basis functions. The Bayesian “evidence” automatically embod-
ies ”Occam’s razor,’’ penalizing overflexible and overcomplex models.
The Bayesian approach helps detect poor underlying assumptions in
learning models. For learning models well matched to a problem, a
good correlation between generalization ability and the Bayesian evi-
dence is obtained.

This paper makes use of the Bayesian framework for regularization and
model comparison described in the companion paper “Bayesian Inter-
polation” (MacKay 1992a). This framework is due to Gull and Skilling
(Gull 1989).

1 The Gaps in Backprop

There are many knobs on the black box of “backprop” [learning by back-
propagation of errors (Rumelhart et al. 198611. Generally these knobs are
set by rules of thumb, trial and error, and the use of reserved test data
to assess generalization ability (or more sophisticated cross-validation).
The knobs fall into two classes: (1) parameters that change the effective
learning model, for example, number of hidden units, and weight decay

‘Present address: Darwin College, Cambridge CB3 9EU, U.K.

Neural Computation 4,448-472 (1992) @ 1992 Massachusetts Institute of Technology

Zoubin Ghahramani 17 / 39

GOLDEN ERA OF BAYESIAN NEURAL NETWOKS

Zoubin Ghahramani 18 / 39

GOLDEN ERA OF BAYESIAN NEURAL NETWORKS

I Neal, R.M. Bayesian learning
via stochastic dynamics. In
NIPS 1993.
First Markov Chain Monte
Carlo (MCMC) sampling
algorithm for Bayesian neural
networks. Uses Hamiltonian
Monte Carlo (HMC), a
sophisticated MCMC algorithm
that makes use of gradients to
sample efficiently.

Zoubin Ghahramani 19 / 39

GOLDEN ERA OF BAYESIAN NEURAL NETWORKS

I Neal, R.M. Bayesian learning
for neural networks. PhD
thesis, University of Toronto,
1995. ... thesis also establishes
link between BNNs and
Gaussian processes and
describes ARD (automatic
relevance determination).

Zoubin Ghahramani 20 / 39

GAUSSIAN PROCESSES

Consider the problem of nonlinear regression: You want to
learn a function f with error bars from data D = {X, y}

x

y

A Gaussian process defines a distribution over functions p(f) which
can be used for Bayesian regression:

p(f |D) = p(f)p(D|f)
p(D)

Definition: p(f) is a Gaussian process if for any finite subset
{x1, . . . , xn} ⊂ X , the marginal distribution over that subset p(f) is
multivariate Gaussian.

GPs can be used for regression, classification, ranking, dim. reduct...
Zoubin Ghahramani 21 / 39

A PICTURE: GPS, LINEAR AND LOGISTIC

REGRESSION, AND SVMS

Logistic
Regression

Linear
Regression

Kernel
Regression

Bayesian
Linear

Regression

GP
Classification

Bayesian
Logistic

Regression

Kernel
Classification

GP
Regression

Classification

Bayesian
Kernel

Zoubin Ghahramani 22 / 39

NEURAL NETWORKS AND GAUSSIAN PROCESSES

inputs

outputs

x

y

weights

hidden
units

weights

Bayesian neural network
Data: D = {(x(n), y(n))}N

n=1 = (X, y)
Parameters θ are weights of neural net

prior p(θ|α)
posterior p(θ|α,D) ∝ p(y|X,θ)p(θ|α)
prediction p(y′|D, x′,α) =

∫
p(y′|x′,θ)p(θ|D,α) dθ

A neural network with one hidden layer, infinitely
many hidden units and Gaussian priors on the weights
→ a GP (Neal, 1994). He also analysed infinitely deep
networks. x

y

Zoubin Ghahramani 23 / 39

AUTOMATIC RELEVANCE DETERMINATIONFeature Selection: Automatic Relevance Determination

Bayesian neural network

Data: D = {(x(n), y(n))}N
n=1 = (X,y)

Parameters (weights): ✓ = {{wij}, {vk}}

prior p(✓|↵)
posterior p(✓|↵,D) / p(y|X,✓)p(✓|↵)
evidence p(y|X,↵) =

R
p(y|X,✓)p(✓|↵) d✓

prediction p(y0|D,x0,↵) =
R

p(y0|x0,✓)p(✓|D,↵) d✓

Automatic Relevance Determination (ARD):

Let the weights from feature xd have variance ↵�1
d : p(wdj|↵d) = N (0,↵�1

d)

Let’s think about this:
↵d !1 variance ! 0 weights ! 0 (irrelevant)
↵d ⌧1 finite variance weight can vary (relevant)

ARD: Infer relevances ↵ from data. Often we can optimize ↵̂ = argmax
↵

p(y|X,↵).

During optimization some ↵d will go to 1, so the model will discover irrelevant
inputs.

Feature and architecture selection, due to MacKay and Neal, now
often associated with GPs.Zoubin Ghahramani 24 / 39

VARIATIONAL LEARNING IN BAYESIAN NEURAL

NETWORKS

I Geoffrey E Hinton and Drew Van Camp. Keeping the
neural networks simple by minimizing the description
length of the weights. In COLT, pages 5-13. ACM, 1993.
Derives a diagonal Gaussian variational approximation to the
Bayesian network weights but couched in a minimum
description length information theory language.

I David Barber and Christopher M Bishop. Ensemble
learning in Bayesian neural networks. In Generalization in
Neural Networks and Machine Learning Springer Verlag,
215-238, 1998. Full covariance Gaussian variational
approximation to the Bayesian network weights.

Zoubin Ghahramani 25 / 39

VARIATIONAL LEARNING IN BAYESIAN NEURAL

NETWORKS

Target of Bayesian inference:
posterior over weights p(θ|D).
MCMC:
a chain that samples θ(t) → θ(t+1) →
θ(t+2) → . . . such that the samples
converge to the distribution p(θ|D).
Variational Bayes:
find approximation q(θ) that is
arg min KL(q(θ)||p(θ|D)).

Zoubin Ghahramani 26 / 39

ASIDE: SIGMOID BELIEF NETWORKS

Artificial Intelligence 56 (1992) 71-113 71
Elsevier

Connectionist learning of belief
networks

Radford M. Neal
Department of Computer Science, University of Toronto, 10 King's College Road,
Toronto, Ontario, Canada M5S 1A4

Received January 1991
Revised November 1991

Abstract

Neal, R.M., Connectionist learning of belief networks, Artificial Intelligence 56 (1992)
71-113.

Connectionist learning procedures are presented for "sigmoid" and "noisy-OR" varieties
of probabilistic belief networks. These networks have previously been seen primarily as a
means of representing knowledge derived from experts. Here it is shown that the "Gibbs
sampling" simulation procedure for such networks can support maximum-likelihood
learning from empirical data through local gradient ascent. This learning procedure
resembles that used for "Boltzmann machines", and like it, allows the use of "hidden"
variables to model correlations between visible variables. Due to the directed nature
of the connections in a belief network, however, the "negative phase" of Boltzmann
machine learning is unnecessary. Experimental results show that, as a result, learning in
a sigmoid belief network can be faster than in a Boltzmann machine. These networks
have other advantages over Boltzmann machines in pattern classification and decision
making applications, are naturally applicable to unsupervised learning problems, and
provide a link between work on connectionist learning and work on the representation
of expert knowledge.

1. Introduction

T h e w o r k r e p o r t e d he re can be seen f r o m two p e r s p e c t i v e s . F r o m one p o i n t
o f v iew, i t d e s c r i b e s a c o n n e c t i o n i s t n e t w o r k w i th c a p a b i l i t i e s c o m p a r a b l e
to t h o s e o f t he B o l t z m a n n m a c h i n e , b u t w i th b e t t e r l e a r n i n g p e r f o r m a n c e .
F r o m the o the r , i t shows h o w b e l i e f n e t w o r k s can be l e a r n e d f r o m e m p i r i c a l
d a t a , as an a l t e r n a t i v e , o r a s u p p l e m e n t , to t h e i r s p e c i f i c a t i o n b y exper t s .

Correspondence to: R.M. Neal, Department of Computer Science, University of Toronto, 10
King's College Road, Toronto, Ontario, Canada M5S 1A4. E-mail: radford@cs.toronto.edu.

0004-3702/92/$ 05.00 © 1992 - - Elsevier Science Publishers B.V. All rights reserved

I Explicit link between feedforward neural
networks (aka connectionist networks) and
graphical models (aka belief networks).

I Gibbs samples over hidden units.
I A Bayesian nonparametric version of this model

which samples over number of hidden units,
number of layers, and types of hidden units is
given in (Adams, Wallach, and Ghahramani,
2010)

ar
X

iv
:1

00
1.

01
60

v2
 [

st
at

.M
L]

 1
9

A
ug

 2
01

0
LEARNING THE STRUCTURE OF DEEP SPARSE

GRAPHICAL MODELS

By Ryan P. Adams∗, Hanna M. Wallach and Zoubin Ghahramani

University of Toronto, University of Massachusetts
and University of Cambridge

Deep belief networks are a powerful way to model complex prob-
ability distributions. However, learning the structure of a belief net-
work, particularly one with hidden units, is difficult. The Indian buf-
fet process has been used as a nonparametric Bayesian prior on the
directed structure of a belief network with a single infinitely wide
hidden layer. In this paper, we introduce the cascading Indian buffet
process (CIBP), which provides a nonparametric prior on the struc-
ture of a layered, directed belief network that is unbounded in both
depth and width, yet allows tractable inference. We use the CIBP
prior with the nonlinear Gaussian belief network so each unit can
additionally vary its behavior between discrete and continuous rep-
resentations. We provide Markov chain Monte Carlo algorithms for
inference in these belief networks and explore the structures learned
on several image data sets.

1. Introduction. The belief network or directed probabilistic graphical
model [Pearl, 1988] is a popular and useful way to represent complex prob-
ability distributions. Methods for learning the parameters of such networks
are well-established. Learning network structure, however, is more difficult,
particularly when the network includes unobserved hidden units. Then, not
only must the structure (edges) be determined, but the number of hidden
units must also be inferred. This paper contributes a novel nonparametric
Bayesian perspective on the general problem of learning graphical models
with hidden variables. Nonparametric Bayesian approaches to this problem
are appealing because they can avoid the difficult computations required
for selecting the appropriate a posteriori dimensionality of the model. In-
stead, they introduce an infinite number of parameters into the model a pri-
ori and inference determines the subset of these that actually contributed
to the observations. The Indian buffet process (IBP) [Ghahramani et al.,
2007, Griffiths and Ghahramani, 2006] is one example of a nonparamet-
ric Bayesian prior and it has previously been used to introduce an infi-
nite number of hidden units into a belief network with a single hidden
layer [Wood et al., 2006].

∗http://www.cs.toronto.edu/~rpa

1

Zoubin Ghahramani 27 / 39

ANOTHER CUBE...

Products of
Gaussians,

(MCA & XCA)

Factor
Analysis
(& PCA)

ICA

X

Deep
Boltzmann
Machines

X

RBM

Hierarchical
Nonlinear FA /
Sigmoid Belief

Nets / Deep GPs

Undirected

Deep / Hierarchical

Nonlinear /Non-Gaussian

Neal (1992); Hinton & Gh. (1997);
Gh. and Hinton (1998);

Damianou & Lawrence (2013);
Adams, Wallach & Gh. (2010)

Hinton and Sejnowski (1986);
Salakhutdinov and Hinton (2009)

Williams and Agakov (2002);
Welling et al (2004)

Pearson (1901);
Spearman (1904))

Herault & Jutten (1986);
Comon (1994)

Zoubin Ghahramani 28 / 39

STOCHASTIC GRADIENT LANGEVIN DYNAMICS

I Max Welling and Yee Whye Teh, Bayesian Learning via
Stochastic Gradient Langevin Dynamics. ICML 2011.
Combines SGD with Langevin dynamics (a form of MCMC) to
get a highly scalable approximate MCMC algorithm based on
minibatch SGD.

Stochastic Gradient Langevin Dynamics

gorithm on a few models and Section 6 concludes.

2. Preliminaries

Let θ denote a parameter vector, with p(θ) a prior
distribution, and p(x|θ) the probability of data item
x given our model parameterized by θ. The posterior
distribution of a set of N data items X = {xi}N

i=1

is: p(θ|X) ∝ p(θ)
∏N

i=1 p(xi|θ). In the optimization
literature the prior regularizes the parameters while
the likelihood terms constitute the cost function to
be optimized, and the task is to find the maximum
a posteriori (MAP) parameters θ∗. A popular class
of methods called stochastic optimization (Robbins &
Monro, 1951) operates as follows. At each iteration t,
a subset of n data items Xt = {xt1, . . . , xtn} is given,
and the parameters are updated as follows:

∆θt =
ϵt

2

(
∇ log p(θt) +

N

n

n∑

i=1

∇ log p(xti|θt)

)
(1)

where ϵt is a sequence of step sizes. The general
idea is that the gradient computed on the subset is
used to approximate the true gradient over the whole
dataset. Over multiple iterations the whole dataset
is used and the noise in the gradient caused by using
subsets rather than the whole dataset averages out.
For large datasets where the subset gradient approx-
imation is accurate enough, this can give significant
computational savings over using the whole dataset to
compute gradients at each iteration.

To ensure convergence to a local maximum, in addition
to other technical assumptions, a major requirement
is for the step sizes to satisfy the property

∞∑

t=1

ϵt = ∞
∞∑

t=1

ϵ2t < ∞ (2)

Intuitively, the first constraint ensures that parameters
will reach the high probability regions no matter how
far away it was initialized to, while the second ensures
that the parameters will converge to the mode instead
of just bouncing around it. Typically, step sizes ϵt =
a(b + t)−γ are decayed polynomially with γ ∈ (0.5, 1].

The issue with ML or MAP estimation, as stochas-
tic optimization aims to do, is that they do not cap-
ture parameter uncertainty and can potentially overfit
data. The typical way in which Bayesian approaches
capture parameter uncertainty is via Markov chain
Monte Carlo (MCMC) techniques (Robert & Casella,
2004). In this paper we will consider a class of MCMC
techniques called Langevin dynamics (Neal, 2010). As
before, these take gradient steps, but also injects Gaus-
sian noise into the parameter updates so that they do

not collapse to just the MAP solution:

∆θt =
ϵ

2

(
∇ log p(θt) +

N∑

i=1

∇ log p(xi|θt)

)
+ ηt

ηt ∼ N(0, ϵ) (3)

The gradient step sizes and the variances of the in-
jected noise are balanced so that the variance of the
samples matches that of the posterior. Langevin dy-
namics is motivated and originally derived as a dis-
cretization of a stochastic differential equation whose
equilibrium distribution is the posterior distribution.
To correct for discretization error, one can take (3)
to just be a proposal distribution and correct using
Metropolis-Hastings. Interestingly, as we decrease ϵ
the discretization error decreases as well so that the re-
jection rate approaches zero. However typical MCMC
practice is to allow an initial adaptation phase where
the step sizes are adjusted, followed by fixing the step
sizes to ensure a stationary Markov chain thereafter.

More sophisticated techniques use Hamiltonian dy-
namics with momentum variables to allow parameters
to move over larger distances without the inefficient
random walk behaviour of Langevin dynamics (Neal,
2010). However, to the extent of our knowledge all
MCMC methods proposed thus far require computa-
tions over the whole dataset at every iteration, result-
ing in very high computational costs for large datasets.

3. Stochastic Gradient Langevin
Dynamics

Given the similarities between stochastic gradient al-
gorithms (1) and Langevin dynamics (3), it is nat-
ural to consider combining ideas from the two ap-
proaches. This allows efficient use of large datasets
while allowing for parameter uncertainty to be cap-
tured in a Bayesian manner. The approach is straight-
forward: use Robbins-Monro stochastic gradients, add
an amount of Gaussian noise balanced with the step
size used, and allow step sizes to go to zero. The pro-
posed update is simply:

∆θt =
ϵt

2

(
∇ log p(θt) +

N

n

n∑

i=1

∇ log p(xti|θt)

)
+ ηt

ηt ∼ N(0, ϵt) (4)

where the step sizes decrease towards zero at rates sat-
isfying (2). This allows averaging out of the stochastic-
ity in the gradients, as well as MH rejection rates that
go to zero asymptotically, so that we can simply ignore
the MH acceptance steps, which require evaluation of
probabilities over the whole dataset, all together.

Doing Bayesian inference can be as simple as running
noisy SGD

Zoubin Ghahramani 29 / 39

BAYESIAN NEURAL NETWORK REVIVAL (SOME

RECENT PAPERS)

I A. Honkela and H. Valpola. Variational learning and bits-back coding: An
information-theoretic view to Bayesian learning. IEEE Transactions on Neural
Networks, 15:800-810, 2004.

I Alex Graves. Practical variational inference for neural networks. In NIPS 2011.
I Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight

uncertainty in neural network. In ICML, 2015.
I José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for

scalable learning of Bayesian neural networks. In ICML, 2015.
I José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui,

and Richard E Turner. Black-box alpha divergence minimization. In Proceedings of The
33rd International Conference on Machine Learning, pages 1511-1520, 2016.

I Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. ICML, 2016.

I Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. NIPS, 2016.

Zoubin Ghahramani 30 / 39

When do we need probabilities?

Zoubin Ghahramani 31 / 39

WHEN IS THE PROBABILISTIC APPROACH

ESSENTIAL?

Many aspects of learning and intelligence depend crucially on
the careful probabilistic representation of uncertainty:

I Forecasting
I Decision making
I Learning from limited, noisy, and missing data
I Learning complex personalised models
I Data compression
I Automating scientific modelling, discovery, and

experiment design

Zoubin Ghahramani 32 / 39

CONCLUSIONS

Probabilistic modelling offers a general framework for
building systems that learn from data

Advantages include better estimates of uncertainty, automatic
ways of learning structure and avoiding overfitting, and a
principled foundation.

Disadvantages include higher computational cost, depending on
the approximate inference algorithm

Bayesian neural networks have a long history and are
undergoing a tremendous wave of revival.

Ghahramani, Z. (2015) Probabilistic machine learning and artificial
intelligence. Nature 521:452–459.
http://www.nature.com/nature/journal/v521/n7553/full/nature14541.html

Zoubin Ghahramani 33 / 39

APPENDIX

Zoubin Ghahramani 34 / 39

MODEL COMPARISON

0 5 10
−20

0

20

40

M = 0

0 5 10
−20

0

20

40

M = 1

0 5 10
−20

0

20

40

M = 2

0 5 10
−20

0

20

40

M = 3

0 5 10
−20

0

20

40

M = 4

0 5 10
−20

0

20

40

M = 5

0 5 10
−20

0

20

40

M = 6

0 5 10
−20

0

20

40

M = 7

Zoubin Ghahramani 35 / 39

LEARNING MODEL STRUCTURE

How many clusters in the data?
k-means, mixture models

What is the intrinsic data dimensionality ?
PCA, LLE, Isomap, GPLVM

Is this input relevant to predicting that output?
feature / variable selection

What is the order of a dynamical system?
state-space models, ARMA, GARCH

How many states in a hidden Markov model?
HMM

How many units or layers in a neural net?
neural networks, RNNs, ICA

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

44

Supervised Learning in Multilayer
Networks

44.1 Multilayer perceptrons

No course on neural networks could be complete without a discussion of su-
pervised multilayer networks, also known as backpropagation networks.

The multilayer perceptron is a feedforward network. It has input neurons,
hidden neurons and output neurons. The hidden neurons may be arranged
in a sequence of layers. The most common multilayer perceptrons have a
single hidden layer, and are known as ‘two-layer’ networks, the number ‘two’
counting the number of layers of neurons not including the inputs.

Such a feedforward network defines a nonlinear parameterized mapping
from an input x to an output y = y(x;w,A). The output is a continuous
function of the input and of the parameters w; the architecture of the net, i.e.,
the functional form of the mapping, is denoted by A. Feedforward networks
can be ‘trained’ to perform regression and classification tasks.

Regression networks

Hiddens

Inputs

Outputs

Figure 44.1. A typical two-layer
network, with six inputs, seven
hidden units, and three outputs.
Each line represents one weight.

In the case of a regression problem, the mapping for a network with one hidden
layer may have the form:

Hidden layer: a
(1)
j =

∑

l

w
(1)
jl xl + θ

(1)
j ; hj = f (1)(a

(1)
j) (44.1)

Output layer: a
(2)
i =

∑

j

w
(2)
ij hj + θ

(2)
i ; yi = f (2)(a

(2)
i) (44.2)

where, for example, f (1)(a) = tanh(a), and f (2)(a) = a. Here l runs over
the inputs x1, . . . , xL, j runs over the hidden units, and i runs over the out-
puts. The ‘weights’ w and ‘biases’ θ together make up the parameter vector
w. The nonlinear sigmoid function f (1) at the hidden layer gives the neu-
ral network greater computational flexibility than a standard linear regression
model. Graphically, we can represent the neural network as a set of layers of
connected neurons (figure 44.1).

What sorts of functions can these networks implement?

Just as we explored the weight space of the single neuron in Chapter 39,
examining the functions it could produce, let us explore the weight space of
a multilayer network. In figure 44.2 I take a network with one input and one

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-2 -1 0 1 2 3 4 5

Figure 44.3. Samples from the
prior over functions of a one-input
network. For each of a sequence of
values of σbias = 8, 6, 4, 3, 2, 1.6,
1.2, 0.8, 0.4, 0.3, 0.2, and
σin = 5σw

bias, one random function
is shown. The other
hyperparameters of the network
were H = 400, σw

out = 0.05.

output and a large number H of hidden units, set the biases and weights θ
(1)
j ,

529

How to learn the structure of a graphical model?
A

D

C

B

E
Zoubin Ghahramani 36 / 39

BAYESIAN OCCAM’S RAZOR

Compare model classes, e.g. m and m′, using posterior prob. given D:

p(m|D) = p(D|m) p(m)

p(D) , p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Zoubin Ghahramani 37 / 39

BAYESIAN OCCAM’S RAZOR

Compare model classes, e.g. m and m′, using posterior prob. given D:

p(m|D) = p(D|m) p(m)

p(D) , p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretations of the Marginal Likelihood (“model evidence”):
I Probability of the data under the model, averaging over all possible

parameter values.

I The probability that randomly selected parameters from the prior
would generate D.

I log2

(
1

p(D|m)

)
is the number of bits of surprise at observing data D

under model m.

Zoubin Ghahramani 37 / 39

BAYESIAN OCCAM’S RAZOR

Compare model classes, e.g. m and m′, using posterior prob. given D:

p(m|D) = p(D|m) p(m)

p(D) , p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Model classes that are too simple are
unlikely to generate the data set.

Model classes that are too complex can
generate many possible data sets, so
again, they are unlikely to generate that
particular data set at random.

too simple

too complex

"just right"

All possible data sets of size n
P

(D
|m

)
D

Zoubin Ghahramani 37 / 39

MODEL COMPARISON & OCCAM’S RAZOR

0 5 10
−20

0

20

40

M = 0

0 5 10
−20

0

20

40

M = 1

0 5 10
−20

0

20

40

M = 2

0 5 10
−20

0

20

40

M = 3

0 5 10
−20

0

20

40

M = 4

0 5 10
−20

0

20

40

M = 5

0 5 10
−20

0

20

40

M = 6

0 5 10
−20

0

20

40

M = 7

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

M

P
(Y

|M
)

Model Evidence

For example, for quadratic polynomials (m = 2):
y = a0 + a1x + a2x2 + ε, where ε ∼ N (0, σ2) and parameters
θ = (a0 a1 a2 σ)

demo: polybayes

Zoubin Ghahramani 38 / 39

APPROXIMATION METHODS FOR POSTERIORS AND

MARGINAL LIKELIHOODS

Observed data D, parameters θ, model class m:

p(θ|D,m) =
p(D|θ,m)p(θ|m)

p(D|m)

p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

I Laplace approximation
I Bayesian Information Criterion (BIC)
I Variational approximations
I Expectation Propagation (EP)
I Markov chain Monte Carlo methods (MCMC)
I Sequential Monte Carlo (SMC)
I Exact Sampling
I ...

Zoubin Ghahramani 39 / 39

APPROXIMATION METHODS FOR POSTERIORS AND

MARGINAL LIKELIHOODS

Observed data D, parameters θ, model class m:

p(θ|D,m) =
p(D|θ,m)p(θ|m)

p(D|m)

p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

I Laplace approximation
I Bayesian Information Criterion (BIC)
I Variational approximations
I Expectation Propagation (EP)
I Markov chain Monte Carlo methods (MCMC)
I Sequential Monte Carlo (SMC)
I Exact Sampling
I ...

Zoubin Ghahramani 39 / 39

