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DEDICATION

to my friend and colleague David MacKay:
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I’m a NIPS old-timer, apparently...

...so now I give talks about history.
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BACK IN THE 1980S

There was a huge wave of excitement when Boltzmann
machines were published in 1985, the backprop paper came out
in 1986, and the PDP volumes appeared in 1987.

This field also used to be called Connectionism and NIPS was
its main conference (launched in 1987).
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WHAT IS A NEURAL NETWORK?

Neural network is a parameterized function
Data: D = {(x(",y")IV_ = (X,y)
Parameters 0 are weights of neural net.

outputs

weights
Feedforward neural nets model p(y™ |x(""), )
as a nonlinear function of @ and x, e.g.:

PO =11, 0) = (3 ;")

hidden
units

weights

inputs

X

Multilayer / deep neural networks model the overall function as a
composition of functions (layers), e.g.:

y = Z 6 Z 0! )+ €
J

Usually trained to maximise likelihood (or penalised likelihood) using
variants of stochastic gradient descent (SGD) optimisation.
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DEEP LEARNING
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Deep learning systems are neural network models similar to
those popular in the *80s and ’90s, with:

» some architectural and algorithmic innovations (e.g. many
layers, ReLLUs, better initialisation and learning rates, dropout,
LSTMs, ...)

» vastly larger data sets (web-scale)
» vastly larger-scale compute resources (GPU, cloud)
» much better software tools (Theano, Torch, TensorFlow)

» vastly increased industry investment and media hype
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LIMITATIONS OF DEEP LEARNING

Neural networks and deep learning systems give amazing
performance on many benchmark tasks, but they are generally:

>

>

very data hungry (e.g. often millions of examples)

very compute-intensive to train and deploy (cloud GPU
resources)

poor at representing uncertainty
easily fooled by adversarial examples

finicky to optimise: non-convex + choice of architecture,
learning procedure, initialisation, etc, require expert
knowledge and experimentation

uninterpretable black-boxes, lacking in trasparency,
difficult to trust
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WHAT DO I MEAN BY BEING BAYESIAN?

Dealing with all sources of parameter uncertainty
Also potentially dealing with structure uncertainty

y

outputs Feedforward neural nets model p(y |x("), §)

Parameters 6 are weights of neural net.

weights

Structure is the choice of architecture,
number of hidden units and layers, choice of

hidden
units

ight . . .
welghts activation functions, etc.

inputs
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P(hypothesis)P(data|hypothesis)
> P(h)P(datalh)

P(hypothesis|data) =

» Bayes rule tells us how to do inference
about hypotheses (uncertain quantities)
from data (measured quantities).

» Learning and prediction can be seen as

forms of inference.
Reverend Thomas Bayes (1702-1761)
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Everything follows from two simple rules:
Sum rule: P(x) =3 P(x,y)
Product rule:  P(x,y) = P(x)P(y|x)

Learning:
P(D|O. m\P(0|\m P(D|0,m) likelihood of parameters € in model m
P(9|D, m) = ( | ’ ) ( l ) P(0|m) prior probability of 6
P(Dlm) P(0|D,m)  posterior of 0 given data D
Prediction:

P(x|D,m) = /P(x]Q,’D,m)P(9|D,m)d9

Model Comparison:
P(D|m)P(m
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WHY SHOULD WE CARE?

Calibrated model and prediction uncertainty: getting
systems that know when they don’t know.

Automatic model complexity control and structure learning
(Bayesian Occam’s Razor)

average loss: 0.1349807089097427

Figure from Yarin Gal’s thesis “Uncertainty in Deep Learning” (2016)
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A NOTE ON MODELS VS ALGORITHMS

In early NIPS there was an "Algorithms and Architectures" track

Models: Algorithms

convnets Stochastic Gradient Descent
LDA Conjugate-gradients

RNNs MCMC

HMMs Variational Bayes and SVI
Boltzmann machines | SGLD

State-space models
Gaussian processes

Belief propagation, EP

There are algorithms that target finding a parameter optimum, 6* and
algorithms that target inferring the posterior p(6|D)

Often these are not so different

Let’s be clear: “Bayesian” belongs in the Algorithms category, not
the Models category. Any well defined model can be treated in a

Bayesian manner.

Zoubin Ghahramani
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outputs

Bayesian neural network

Data: D = {(x"),y)}¥ | = (X,y)

weights

hidden
units

Parameters 6 are weights of neural net

weights
inputs

prior p(0la)

posterior  p(0|a, D) x p(y|X,0)p(0]cx)

prediction p(y'|D,x, ) = [p(y'|x',0)p(0|D, o) dO
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Complex Systems 1 (1987) 877-922

Large Automatic Learning, Rule Extraction, and
Generalization

John Denker
Daniel Schwartz
Ben Wittner
Sara Solla
Richard Howard
Lawrence Jackel
AT&T Bell Laboratories, Holmdel, NJ 07733, USA

John Hopfield
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

an,
California Tnstitute of Technology, Pasadena, CA 91125, USA

We remind the reader that one is not allowed to search W space to find
the “correct” rule extracting network. That cannot be done without using
data from the testing set X, which defeats the purpose, by definition. That
would be like betting on the winning horse after the race is over. We are
only allowed to play the probabilities in W space.

14.2 Derivation

The task of choosing a probability distribution in W space is a bit tricky. The
choice depends on just what method is used for “learning”, i.e. for searching
W space. Fortunately, the exact form of the distribution is not important for
our arfument, You could, for instance, use a probability density proportional
to eI/« for some “radius” w. We will for most purposes use a distribution
that is uniform inside a hypercubical volume (w on a side) and zero elsewhere.
We choose w to be big enough to enclose reasonable weight values, but not
too much bigger than that.

We can map weight space onto function space as follows: for each con-
figuration of weights, W, build a network with those weights. Present it all
possible binary inputs. Observe the corresponding outputs, and convert to
binary. This mapping associates a definite truth table, i.e. a definite Boolean
function, with each point in W space. To say it the other way, the inverse
image of a function is a region in weight space.

By integrating over weight space, we can assign a probability P; to each
function. If w is large enough, and if there are enough hidden units (H o 2V),
there will be non-zero probability assigned to every function, according to
the discussion in section 5. On the other hand, we are particularly interested

p- 904 hints at Bayesian integration over network parameters

» John Denker, Daniel Schwartz, Ben Wittner, Sara Solla, Richard
Howard, Lawrence Jackel, and John Hopfield. Large automatic

learning, rule extraction, and generalization. Complex Systems,

1(5):877-922, 1987.
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EARLY HISTORY OF BAYESIAN NEURAL NETWOKS

» Naftali Tishby, Esther Levin, and Sara A Solla. Consistent
inference of probabilities in layered networks: Predictions and
generalizations. In IJCNN, 1989.

The conditional distribution (7) can now be inverted to induce a
distribution on the network configuration space, W, given the set
of input-output pairs x™), using Bayes formula . X
4. Example: architecture selection for the contiguity
p(‘»(m) P ™ | @) problem

(@)= P(o|x™)= , ®
P I Jdo p@(0) P x™ | @)
w

To demonstrate the utility of the average prediction error
for determining a sufficient size of the training set, as well as
where p® is a nonsingular prior distribution on the  selecting the optimal architecture of the network, we focus on a
configuration space.
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EARLY HISTORY OF BAYESIAN NEURAL NETWOKS

» John Denker and Yann LeCun. Transforming neural-net output
levels to probability distributions. In NIPS 3, 1991.

weight configuration is an exponential function of the loss (Tishby, Levin and Solla,
1989). Therefore the probability can be modelled locally as a multidimensional
gaussian centered at W; to a reasonable (Denker and leCun, 1990) approximation
the probability is proportional to:

pm(W) = pu(W)expl—ﬁZ hai(W; — W) /2] @)

where h is the second derivative of the loss (the Hessian), B is a scale factor that
determines our overall confidence in the training data, and py expresses any infor-
mation we have about prior probabilities. The sums run over the dimensions of
parameter space. The width of this gaussian describes the range of networks in the
ensemble that are reasonably consistent with the training data.

» Wray L Buntine and Andreas S Weigend. Bayesian
back-propagation. Complex Systems, 5(6):603-643, 1991.
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GOLDEN ERA OF BAYESIAN NEURAL NETWOKS

» David JC MacKay. Neural Computation, 4(3):448-472, 1992:

A Practical Bayesian Framework for Backpropagation
Networks

David J. C. MacKay*
Computation and Neural Systems, California Institute of Technology 139-74,
Pasadena, CA 91125 USA

A quantitative and practical Bayesian framework is described for learn-
ing of mappings in feedforward networks. The framework makes
possible (1) objective comparisons between solutions using alternative
network architectures, (2) objective stopping rules for network prun-
ing or growing procedures, (3) objective choice of magnitude and type
of weight decay terms or additive regularizers (for penalizing large
weights, etc.), (4) a measure of the effective number of well-determined
parameters in a model, (5) quantified estimates of the error bars on net-
work parameters and on network output, and (6) objective comparisons
with alternative learning and interpolation models such as splines and
radial basis functions. The Bayesian “evidence” automatically embod-
ies “Occam’s razor,” penalizing overflexible and overcomplex models.
The Bayesian approach helps detect poor underlying assumptions in
learning models. For learning models well matched to a problem, a
good correlation between generalization ability and the Bayesian evi-

. ! dence is obtained.
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GOLDEN ERA OF BAYESIAN NEURAL NETWOKS

ADREANCIES: IIN

NEURAL
INFORMATION
PROCESSING
SYSTEMS 5

EDITED BY
STEPHEN JOSE HANSON
JACK D. COWAN
C. LEE GILES
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» Neal, R.M. Bayesian learning
via stochastic dynamics. In
NIPS 1993.

First Markov Chain Monte
Carlo (MCMC) sampling
algorithm for Bayesian neural
networks. Uses Hamiltonian
Monte Carlo (HMC), a
sophisticated MCMC algorithm
that makes use of gradients to
sample efficiently.
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BAYESIAN LEARNING FOR NEURAL NETWORKS

» Neal, R.M. Bayesian learning
for neural networks. PhD
thesis, University of Toronto,
1995. ... thesis also establishes
link between BNNs and
Gaussian processes and
describes ARD (automatic
relevance determination).

Radford M. Neal

in the University of Toronto
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Consider the problem of nonlinear regression: You want to
learn a function f with error bars from data D = {X,y}

A Gaussian process defines a distribution over functions p(f) which
can be used for Bayesian regression:

p)p(DIf)
p(fID) = LS
ViD= )
Definition: p(f) is a Gaussian process if for any finite subset
{x1,...,x,} C X, the marginal distribution over that subset p(f) is
multivariate Gaussian.

GPs can be used for regression, classification, ranking, dim. reduct...
Zoubin Ghahramani 21/39
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Linear
Regression

Logistic
Regression

Bayesian Bayesian

Linear >‘ Logistic
Regression Regression

Kernel Kernel
Regression Classification

GP GP
Regression Classification

Classification

Bayesian
Kernel

22/39



Bayesian neural network
Data: D = {(x), y")}N | = (X,y)
Parameters 0 are weights of neural net

outputs

weights

hidden
units

prior p(0|c)
posterior  p(0|a, D)  p(y|X, 8)p(0|cx)

weights

inputs

X

A neural network with one hidden layer, infinitely
many hidden units and Gaussian priors on the weights
— a GP (Neal, 1994). He also analysed infinitely deep
networks. x

Zoubin Ghahramani
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AUTOMATIC RELEVANCE DETERMINATION

Bayesian neural network

Data: D = {(x™,y™)})L, = (X.,y)
Parameters (weights): 6 = {{w;;}, {vr}}

prior p(0|cx)

posterior  p(0|a, D) x p(y| X, 0)p(0|c)

evidence  p(y|X, a) fp v|X,0)p(0|x) d6
prediction  p(y'|D,x’, a) = [p(y'|x,0)p(0|D, ) dO

Automatic Relevance Determination (ARD):

Let the weights from feature x4 have variance o ": p(waj|aq) = N(0,a;")

g — 00 variance - 0  weights — 0 (irrelevant)
Let’s think about this: a4 <« 0o finite variance weight can vary (relevant)

ARD: Infer relevances o from data. Often we can optimize & = argmax p(y|X, a).
«

During optimization some a4 will go to co, so the model will discover irrelevant
inputs.

Feature and architecture selection, due to MacKay and Neal, now
zoubin cREtEMassociated with GPs. 24139



VARIATIONAL LEARNING IN BAYESIAN NEURAL
NETWORKS

» Geoffrey E Hinton and Drew Van Camp. Keeping the
neural networks simple by minimizing the description
length of the weights. In COLT, pages 5-13. ACM, 1993.
Derives a diagonal Gaussian variational approximation to the
Bayesian network weights but couched in a minimum
description length information theory language.

» David Barber and Christopher M Bishop. Ensemble
learning in Bayesian neural networks. In Generalization in
Neural Networks and Machine Learning Springer Verlag,
215-238, 1998. Full covariance Gaussian variational
approximation to the Bayesian network weights.
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Abstract

Supervised neural networks generalize well if
there is much less information in the weights
than there is in the output vectors of the train-
ing cases. So during learning, it is impor-
tant to keep the weights simple by penaliz-
ing the amount of information they contain.
The amount of information in a weight can
be controlled by adding Gaussian noise and
the noise level can be adapted during learning
to optimize the trade-off between the expected
squared error of the network and the amount
of information in the weights. We describe
a method of computing the derivatives of the
expected squared error and of the amount of
information in the noisy weights in a net-
work that contains a layer of non-linear hidden
units. Provided the output units are linear, the
exact derivatives can be computed efficiently
without time-consuming Monte Carlo simula-
tions. The idea of minimizing the amount of
information that is required to communicate
the weights of a neural network leads to a
number of interesting schemes for encoding the
weights.

Zoubin Ghahramani

VARIATIONAL LEARNING IN BAYESIAN NEURAL
NETWORKS

Target of Bayesian inference:
posterior over weights p(0|D).

MCMC:

a chain that samples 0,y — 041) —
0(+2 — ... such that the samples
converge to the distribution p(6|D).

Variational Bayes:
find approximation ¢(0)
arg min KL(q(0)||p(0|D)).

that is
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Connectionist learning of belief
networks

Radford M. Neal

Deparment of ComputerScene, University of Toronto, 10 King's Collee Road,
Toronto, Ontario, Canada MSS 144

Received January 1991
Revised November 1991

Abstract

Neal, RM., Connectionist learning of belief newworks, Artificial Inteligence 56 (1992)
71113,

‘Crunecionist laring provetaces e revnd foe “Sgaa and “isy OR” vaictien

‘means of representing Here it ‘Gl
sampling” simulation procedure for such networks can support mlulwm»llkzlllwod
leaming from empirical data through local gradicnt ascent. This Icarning proced:
el tht usd or “Bolamann macines”, and ke i, sllows e e o maden”
tween visit 10 the directed nature
of the eamnm in a belief MIM . the “negative phase” of Boltzmann
machine learning is unnecessary. Experimental results show that, as a result, leaming in

a
provide a link between work on connectionist learning and work on the representation

Zoubin Ghahramani

> Explicit link between feedforward neural
networks (aka connectionist networks) and
graphical models (aka belief networks).

Gibbs samples over hidden units.

» A Bayesian nonparametric version of this model
which samples over number of hidden units,
number of layers, and types of hidden units is
given in (Adams, Wallach, and Ghahramani,
2010)

LEARNING THE STRUCTURE OF DEEP SPARSE
GRAPHICAL MODELS

BY RYAN P. ADAMS*, HANNA M. WALLACH AND ZOUBIN GHAHRAMANI

University of Toronto, University of Massachusetts
and University of Cambridge

Deep belief networks are a powerful way o model complex prob-
ability distributions. However, learning the structure of a belief net-
work, pasticularly one with hidden units, i diffcult. The Indian buf-
fet process has been wsed as a nonparametric Baesian prior on the
directed structure of a belief network with a single infnitely wide
hidden layer. In this paper, we introduce the cascading Indian buffet
process (CIBP), which provides  nonpasametric prior on the stric-
ture of a layered, directed belief network that is unbounded in both
depth and width, yet allows tractable inference. We use the CIBP
prior with the nonlinear Gaussian belief network so each unit can

itionally vary its behavior between discrete and continmious rep-
resentations. We provide Markoy chain Monte Carlo algorithims for
inforence in these belif networks and explore the structures leasned

i soveral image data sets.
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Pearson (1901);
Spearman (1904))

Williams and Agakov (2002);
Welling et al (2004)

Factor
Analysis
(& PCA)

Products of
Gaussians,
(MCA & XCA)

_\

o K

Herault & Jutten (1986);
Comon (1994)

Hierarchical
! Deep
Nonlinear FA / Boltzmann
Sigmoid Belief Machines
Nets / Deep GPs

Neal (1992); Hinton & Gh. (1997); Hinton and Sejnowski (1986);
Gh. and Hinton (1998); Salakhutdinov and Hinton (2009)
Damianou & Lawrence (2013);
Adams, Wallach & Gh. (2010)

Undirected

Deep / Hierarchical
Nonlinear /Non-Gaussian

28/39



» Max Welling and Yee Whye Teh, Bayesian Learning via
Stochastic Gradient Langevin Dynamics. ICML 2011.
Combines SGD with Langevin dynamics (a form of MCMC) to
get a highly scalable approximate MCMC algorithm based on

minibatch SGD.
A, = (V log p(0:) + Z Vlogp $t1|0t)) + e
e ~ N(0> et) (4)

Doing Bayesian inference can be as simple as running
noisy SGD
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BAYESIAN NEURAL NETWORK REVIVAL (SOME
RECENT PAPERS)

» A. Honkela and H. Valpola. Variational learning and bits-back coding: An
information-theoretic view to Bayesian learning. IEEE Transactions on Neural
Networks, 15:800-810, 2004.

» Alex Graves. Practical variational inference for neural networks. In NIPS 2011.

» Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In ICML, 2015.

» José Miguel Herndndez-Lobato and Ryan Adams. Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In ICML, 2015.

» José Miguel Herndndez-Lobato, Yingzhen Li, Daniel Herndndez-Lobato, Thang Bui,
and Richard E Turner. Black-box alpha divergence minimization. In Proceedings of The
33rd International Conference on Machine Learning, pages 1511-1520, 2016.

»  Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. ICML, 2016.

»  Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. NIPS, 2016.
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When do we need probabilities?

39



Many aspects of learning and intelligence depend crucially on
the careful probabilistic representation of uncertainty:

| 4

>

>

Forecasting

Decision making

Learning from limited, noisy, and missing data
Learning complex personalised models

Data compression

Automating scientific modelling, discovery, and
experiment design
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CONCLUSIONS

Probabilistic modelling offers a general framework for
building systems that learn from data

Advantages include better estimates of uncertainty, automatic
ways of learning structure and avoiding overfitting, and a
principled foundation.

Disadvantages include higher computational cost, depending on
the approximate inference algorithm

Bayesian neural networks have a long history and are
undergoing a tremendous wave of revival.

Ghahramani, Z. (2015) Probabilistic machine learning and artificial
intelligence. Nature 521:452-459.

http://www.nature.com/nature/journal/v521/n7553/full/natureld4541.html
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LEARNING MODEL STRUCTURE

How many clusters in the data?
k-means, mixture models

What is the intrinsic data dimensionality ?
PCA, LLE, Isomap, GPLVM

Is this input relevant to predicting that output?
feature / variable selection

What is the order of a dynamical system?
state-space models, ARMA, GARCH

How many states in a hidden Markov model?
HMM

How many units or layers in a neural net?
neural networks, RNNs, ICA

How to learn the structure of a graphical model?

Zoubin Ghahramani
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Compare model classes, e.g. m and m’, using posterior prob. given D:

p(D|m) p(m)

pimip) = "=

,pwm=/mwmmwmw

Zoubin Ghahramani 37/39



BAYESIAN OCCAM’S RAZOR

Compare model classes, e.g. m and m’, using posterior prob. given D:

p(Dlm) p(m
p(niD) = "2 i) = [ p(l6.m) plolm) as
p(D)
Interpretations of the Marginal Likelihood (“model evidence”):

> Probability of the data under the model, averaging over all possible
parameter values.

» The probability that randomly selected parameters from the prior
would generate D.

> log, ( W) is the number of bits of surprise at observing data D
under model m.
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Compare model classes, e.g. m and n’, using posterior prob. given D:

p(m|D) = ‘% p(Dlm) = [ p(DI6.m) p(0lm) a0

. A

Model classes that are too simple are .

. 00 simple
unlikely to generate the data set.

£
Model classes that are too complex can &
generate many possible data sets, so “just right"
again, they are unlikely to generate that —f— \ oo complex
D

particular data set at random.

All possible data sets of size n
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MODEL COMPARISON & OCCAM’S RAZOR

M=0 M=1 M=2 M=3
| Model Evidence
40 40 4o) 40 1
. & |
20 20 20} 20
Eta—— o, 038
of w° 0 ** 0 0‘
-20 20 20 20!
0 10 0 10 0 10 0 5 10
M=4 M=5 M=6 M=7
40 40 a0 40}
|
20 20 20| zoi
0 0 0 o 56 7
‘ i
-20 -20 -20 20
0 5 10 0 5 10 0 5 10 0 5 10

For example, for quadratic polynomials (m = 2):
y = dag + aix + arx* + ¢, where € ~ N (0, 0?) and parameters
0 =(apa ay 0)

demo: polybayes
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Observed data D, parameters 8, model class m:
_ p(D|0,m)p(8|m)

PO = D)

p(Dlm) = / p(D|6,m) p(8m) db

Zoubin Ghahramani 39/39



Observed data D, parameters 8, model class m:
_ p(D|0,m)p(8|m)

vV VY VvV VvV VvV VY

PO = D)

p(Dlm) = / p(D|6,m) p(8m) db

Laplace approximation

Bayesian Information Criterion (BIC)
Variational approximations

Expectation Propagation (EP)

Markov chain Monte Carlo methods (MCMC)
Sequential Monte Carlo (SMC)

Exact Sampling

> ...
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