
Variational Deep Q Network

Yunhao Tang
Department of IEOR
Columbia University

yt2541@columbia.edu

Alp Kucukelbir
Department of Computer Science

Columbia University
alp@cs.columbia.edu

Abstract

We propose a framework that directly tackles the probability distribution of the
value function parameters in Deep Q Network (DQN), with powerful variational
inference subroutines to approximate the posterior of the parameters. We will
establish the equivalence between our proposed surrogate objective and variational
inference loss. Our new algorithm achieves efficient exploration and performs well
on large scale chain Markov Decision Process (MDP).

Introduction

Deep reinforcement learning (RL) has enjoyed numerous recent successes in video games, board
games, and robotics control [17, 3, 9, 18]. Deep RL algorithms typically apply naive exploration
schemes such as ε−greedy [12, 19], directly injecting noise into actions [10], and action level entropy
regularization [24]. However, such local perturbations of actions are not likely to lead to systematic
exploration in hard environments [4]. Recent work on deep exploration [13] applies the bootstrap to
approximate the posterior probability of value functions, or injects noise into value function/policy
parameter space [4, 11].

We propose a framework that directly approximates the distribution of the value function parameters
in a Deep Q Network. We present a surrogate objective that combines the Bellman error and an
entropy term that encourages efficient exploration. The equivalence between our proposed objective
and variational inference loss allows for the optimization of parameters using powerful variational
inference subroutines. Our algorithm can be interpreted as performing approximate Thompson
sampling [20], which can partially justify the algorithm’s efficiency. We demonstrate that the
algorithm achieves efficient exploration with good performance on large scale chain Markov decision
processes that surpasses DQN with ε−greedy exploration [12] and NoisyNet [4].

1 Background

Markov Decision Process

A Markov Decision Process is a tuple (S,A,P,R, ρ) where we have state space S, action space
A, transition kernel P : S × A 7→ S, reward function R : S × A 7→ R and initial distribution ρ
over states. A policy is a mapping from state to action π : S 7→ A. At time t in state st ∈ S, the
agent takes action at, transitions to st+1 under P , and receives reward rt underR. Unless otherwise
stated, the expectation over state st+1 and reward rt is with respect to transition kernel P and reward
functionR. The objective is to find a policy π to maximize the discounted cumulative reward

Es0∼ρ,at∼π(·|st)
[∞∑
t=0

rtγ
t
]

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.

where γ is a discount factor. Being in state s, the action-value function Qπ(s, a) under policy π is
defined as the expected cumulative reward that could be received by first taking action a and then
following policy π

Qπ(s, a) = Eat∼π(·|st)
[∞∑
t=0

rtγ
t|s0 = s, a0 = a

]
Under policy π the the Bellman error under policy π is

J(θ) = Es0∼ρ,at∼π(·|st)
[(
Qθ(st, at)−max

a
E [rt + γQθ(st+1, a)]

)2]
(1)

Bellman’s optimality condition specifies that, for optimal policy π∗, its action-value function Q∗(s, a)
satisfies the following condition

Q∗(st, at) = max
a

E
[
rt + γQ∗(st+1, a)

]
for any st ∈ S and at ∈ A. Hence the optimal action value function Q∗(s, a) has zero Bellman error,
any action value function with zero Bellman error is also optimal.

Deep Q Network

Deep Q Networks (DQN) [12] proposes to approximate the action value function Qπ(s, a) by a
neural network Qθ(s, a) with parameters θ. Let πθ be greedy policy with respect to Qθ(s, a). The
aim is to choose θ such that the Bellman error of Equation (1) is minimized.

In practice, the expectation in (1) is estimated byK sample trajectories collected from the environment,
each assumed to have period T . Let Q(i)

θ (s
(i)
t , a

(i)
t) be the approximate action value function

computed at state-action pair (s
(i)
t , a

(i)
t) on the ith sample trajectory. The approximate Bellman error

is

J(θ) ≈ J̃(θ) =
1

K

1

T

K∑
i=1

T−1∑
t=0

(Q̂
(i)
θ (s

(i)
t , a

(i)
t)− rt − γmax

a
Q̂

(i)
θ (s

(i)
t+1, a))2

Equivalently, let N = K × T be total number of samples and {sj , aj , rj , s′j} be a relabeling of

{s(i)t , a
(i)
t , r

(i)
t , s

(i)
t+1} by sample number. Then, the error can be written as

J̃(θ) =
1

N

N∑
j=1

(Qθ(sj , aj)− rj −max
a′

Qθ(s
′
j , a
′))2 (2)

In (2) the term rj + maxa′ Qθ(s
′
j , a
′) is called target value. To minimize Ĵ(θ) is essentially to

minimize the discrepancy between target value and prediction Qθ(sj , aj). To stabilize training, [12]
proposes to compute the target value by a target network with parameter θ−. The target network has
the same architecture as the original network but its parameters are slowly updated, allowing the
target distribution to be more stationary. The final approximate Bellman error is

Ĵ(θ) =
1

N

N∑
j=1

(Qθ(sj , aj)− rj −max
a′

Qθ−(s′j , a
′))2 (3)

The parameter θ is updated by stochastic gradient descent on the final approximate Bellman error
θ ← θ − α∇θĴ(θ) where α is the learning rate.

1.1 Variational Inference

Given a generative model with parameter θ, the samples X are generated from distribution X ∼
p(X|θ). Define prior p(θ) on the parameters θ. Given generated data D = {Xj}Nj=1 the posterior of

θ is computed by Bayes rule p(θ|D) = p(θ,D)
p(D) .

2

In most cases it is challenging to evaluate p(θ|D) directly. Consider using a variational family
distribution qφ(θ) with parameter φ to approximate the posterior. One approach is to minimize the
KL divergence between qφ(θ) and p(θ|D)

min
φ

KL(qφ(θ)||p(θ|D)) (4)

In complex generative models such as Bayesian neural networks, we can approximately solve the
above minimization problem using gradient descent. The gradient of (4) can be derived as an expecta-
tion, which is estimated by sample averages in practical implementation. When KL(qφ(θ)||p(θ|D))
is approximately minimized, we could directly infer from qφ(θ) [1, 15, 8].

2 Related Methods

DQN [12] is one of the first successful frameworks in deep reinforcement learning. Built upon
the original work, there have been numerous attempts to improve the learning stability and sample
efficiency, such as prioritized replay [16], double DQN [6] and duel DQN [23] among others.

The duality between control and inference [21] encourages the application of variational inference to
reinforcement learning problems. [5] propose specialized inference techniques applicable to small
MDPs yet they could not be scaled to large problems.

VIME (Variational Information Maximization Exploration) [7] proposes to encourage exploration by
informational bonus. The algorithm learns a dynamics model of the environment and then computes
informational bonus based on changes in the posterior distribution of the dynamics model. The
informational bonus is computed from a variational family distribution that approximates the posterior.
This offers an novel approach to exploration yet the exploration strategy is still intuitively local.

Bootstrapped DQN [14, 13] proposes to approximate the formidable posterior of value function
parameters with bootstrap. Different heads of the Bootstrapped DQN are trained with different sets of
bootstrapped experience data. Multiple heads of the Bootstrapped DQN entail diverse strategies and
encourage exploration. Though bootstrapping can be performed efficiently by parallel computing,
this method is in general computationally costly.

Recent work on NoisyNet [4] proposes to add noise to value function parameters or policy parameters
directly. The true parameters of the model are parameters that govern the distribution of value
function/policy parameters. By a re-parametrization trick, the distribution parameters are updated
by conventional backpropagation. NoisyNet applies randomization in parameter space, which
corresponds to randomization in policy space and entails more consistent exploration.

BBQ Network [11] is closest in spirit to our work. BBQ Network also randomizes in policy space
and achieves good performance on dialogue tasks when combined with VIME [7] and an entire
pipeline of natural language processing system. Compared to their work, our formulation starts
from a surrogate objective that explicitly encourages exploration and establishes its connection
with variational inference. The variational interpretation allows us to leverage efficient black box
variational subroutines to update network parameters.

3 Proposed Algorithm

3.1 Formulation

As in the DQN formulation, the optimal action value function is approximated by a neural network
Qθ(s, a) with parameter θ. Consider θ following a parameterized distribution θ ∼ qφ(θ) with
parameter φ. The aim is to minimize an expected Bellman error

Eθ∼qφ(θ)
[N∑
j=1

(Qθ(sj , aj)− rj −max
a′

Qθ(s
′
j , a
′))2
]

where we have adopted the sample estimate of Bellman error (without 1
N) as in (2). The distribution

qφ(θ) specifies a distribution over θ and equivalently specifies a distribution over policy πθ. To
entail efficient exploration, we need qφ(θ) to be dispersed. Let H(·) be the entropy of a distribution.

3

Since large H(qφ(θ)) implies dispersed qφ(θ), we encourage exploration by adding an entropy bonus
−H(qφ(θ)) to the above objective

Eθ∼qφ(θ)
[N∑
j=1

(Qθ(sj , aj)− rj −max
a′

Qθ(s
′
j , a
′))2
]
− λH(qφ(θ)) (5)

where λ > 0 is a regularization constant, used to balance the expected Bellman error and entropy
bonus. The aim is to find φ that achieves low expected Bellman error while encompassing as many
different policies as possible.

As in DQN [12], to stabilize training, we have a target parameter distribution qφ−(θ−) over θ− with
slowly updated parameters φ−. The target rj + maxa′ Qθ(s

′
j , a
′) is computed by a target network

θ− sampled from the target distribution θ− ∼ qφ−(θ−). The final surrogate objective is

Eθ∼qφ(θ),θ−∼qφ− (θ−)

[N∑
j=1

(Qθ(sj , aj)− rj −max
a′

Qθ−(s′j , a
′))2
]
− λH(qφ(θ)) (6)

3.2 Variational Inference Interpretation

Next, we offer an interpretation of minimizing surrogate objective (6) as minimizing a variational
inference loss. Let target value dj = rj + maxa′ Qθ−(s′j , a

′) be given (computed by target network

θ−) and let σ =
√

λ
2 . The objective (6) is equivalent up to constant multiplication to

Eθ∼qφ(θ)
[1

2σ2

N∑
j=1

(Qθ(sj , aj)− dj))2
]
−H(qφ(θ)) (7)

To bridge the gap to variational inference, consider Qθ(s, a) as a Bayesian neural network with
parameter θ with improper uniform prior p(θ) ∝ 1. The network generates data with Gaussian
distribution dj ∼ N(Qθ(s, a), σ2) with given standard error σ. Given data D = {dj}Nj=1, p(θ|D)
denotes the posterior distribution of parameter θ. The above objective (7) reduces to KL divergence
between qφ(θ) and the posterior of θ

KL
[
qφ(θ)||p(θ|D)

]
(8)

Hence to update parameter φ based on the proposed objective (6) is equivalent to find a variational
family distribution qφ(θ) as approximation to the posterior p(θ|D). In fact, from (7) we know that
the posterior distribution p(θ|D) is the minimizer distribution of (6),

Here we have established the equivalence between surrogate objective (6) and variational inference
loss (7). In general, we only need to assume Gaussian generative model Qθ(s, a) and any variational
inference algorithm will perform approximate minimization of Bellman error. This interpretation
allows us to apply powerful black-box variational inference packages, such as Edward [22], to update
the value function and leverage different black-box algorithms [15, 8]. We can recover the original
DQN as a special case of Variational DQN. See Appendix.

3.3 Algorithm

The variational inference interpretation of proposed objective allows us to leverage powerful varia-
tional inference machinery to update policy distribution parameter φ.

We have a principal distribution parameter φ and a target distribution parameter φ−. At each time step
t, we sample θ ∼ qφ(θ) and select action by being greedy with respect to Qθ(st, a). The experience
tuple {st, at, rt, st+1} is added to a buffer R for update. When updating parameters, we sample
a mini-batch of tuples {sj , aj , rj , s′j}Nj=1 and compute target values dj = rj + maxa′ Qθ−(s′j , a

′)

using target network parameter θ− ∼ qφ−(θ−). Then we evaluate the KL divergence in (8) using
dj as generated data and improper uniform prior p(θ). The parameter φ is updated by taking one
gradient descent step in KL divergence. The target parameter φ− is updated once in a while as in the
original DQN. The pseudocode is summarized below. The algorithm can be interpreted as performing
approximate Thompson sampling [20]. See Appendix.

4

Algorithm 1 Variational DQN
1: INPUT: improper uniform prior p(θ); target parameter update period τ ; learning rate α; genera-

tive model variance σ2

2: INITIALIZE: parameters φ, φ−; replay buffer R← {}; step counter counter ← 0
3: for e = 1, 2, 3...E do
4: while episode not terminated do
5: counter ← counter + 1
6: Sample θ ∼ qθ(φ)
7: In state st, choose at = arg maxaQθ(st, a), get transition st+1 and reward rt
8: Save experience tuple {st, at, rt, st+1} to buffer R
9: Sample N parameters θ−j ∼ qθ(φ−) and sample N tuples D = {sj , aj , tj , s′j} from R

10: Compute target dj = rj + maxa′ Qθ−j
(s′j , a

′) for jth tuple in D
11: Take gradient ∆φ of the KL divergence in (8)
12: φ← φ− α∆φ
13: if counter mod τ = 0 then
14: Update target parameter φ− ← φ
15: end if
16: end while
17: end for

4 Testing Environments

4.1 Classic Control Tasks

These four classic control tasks are from OpenAI Gym environments [2]. They all require the agent to
learn a good policy to properly control mechanical systems. Among them, MountainCar and Acrobot
are considered as more challenging since to solve the environment requires efficient exploration. For
example in MountainCar, a bad exploration strategy will get the car stuck in the valley and the agent
will never learn the optimal policy.

4.2 Chain MDP

The chain MDP [13] (Figure 1) serves as a benchmark environment to test if an algorithm entails
deep exploration. The environment consists of N states and each episode lasts N + 9 time steps. The
agent has two actions {left, right} at each state si, 1 ≤ i ≤ N , while state s1, sN are both absorbing.
The transition is deterministic. At state s1 the agent receives reward r = 1

1000 , at state sN the agent
receives reward r = 1 and no reward anywhere else. The initial state is always s2, making it hard for
the agent to escape local optimality at s1.

If the agent explores randomly (assign 1
2 probability to choose left and right respectively), the

expected number of time steps required to reach sN is 2N−2. For large N , it is almost not possible
for the randomly exploring agent to reach sN in a single episode, and the optimal strategy to reach
sN by keeping choosing right will never be learned.

(a) Chain MDP with N states

Figure 1: Illustration of Chain MDP [13]

The feature φ(s) of state s is used as input to the neural network Qθ(s, a) to compute approximate
action value function. As suggested in [13], we consider feature mapping φtherm(s) = I{x ≤ s} in
{0, 1}N . where I{·} is the indicator function.

5

5 Experiments

5.1 Classic Control Tasks

We compare Variational DQN and DQN on these control tasks. Both Variational DQN and DQN
can solve the four control tasks within a given number of iterations, yet they display quite different
characteristics in training curves. On simple tasks like CartPole (Figure 2 (a) and (b)), Variational
DQN makes progress faster than DQN but converges at a slower rate. This is potentially because
Variational DQN optimizes over the sum of Bellman error and exploration bonus, and the exploration
bonus term in effect hinders fast convergence on optimal strategy for simple tasks.

(a) CartPole-v0 (b) CartPole-v1

(c) Acrobot-v1 (d) MountainCar-v0

Figure 2: Variational DQP vs. DQN: Training curves of both algorithms on four control tasks.
Training curves are averaged over multiple initializations of both algorithms. Each iteration is 10
episodes.

5.2 Chain MDP

We compare Variational DQN, DQN and NoisyNet on Chain MDP tasks. For small N ≤ 10, all
algorithms converge to optimal policy within reasonable number of iterations, and even the training
curves of Variational DQN and Noisy network are very similar. When N increases such that N ≥ 50,
DQN barely makes progress and cannot converge to optimal policy, while NoisyNet converges more
slowly to optimal policy and oscillates much. When N ≥ 100, both DQN and NoisyNet barely make
progress during tranining.

The performance of Variational DQN is fairly stable across a large range of N . For N ≤ 70,
Variational DQN converges to optimal policy within 500 episodes (50 iterations) on average. However,
when N keeps increasing such that N ≥ 100, Variational DQN takes longer time to find the optimal
policy but it makes steady improvement over time.

The big discrepancy between the performance of these three algorithms on Chain MDP tasks is
potentially due to different exploration schemes. As stated previously, under random exploration, the
expected number of steps it takes to reach sN is approximately 2N−1. Since DQN applies ε−greedy
for exploration, for large N it will never even reach sN within limited number of episodes, letting

6

alone learning the optimal policy. NoisyNet maintains a distribution over value functions, which
allows the agent to consistently execute a sequence of actions under different policies, leading to more
efficient exploration. However, since NoisyNet does not explicitly encourage dispersed distribution
over policies, the algorithm can still converge prematurely if the variance parameter converges quickly
to zero. On the other hand, Variational DQN encourages high entropy over policy distribution and
can prevent such premature convergence.

(a) Chain MDP N = 5 (b) Chain MDP N = 10

(c) Chain MDP N = 50 (d) Chain MDP N = 100

Figure 3: Variational DQP vs. DQN vs. NoisyNet in Chain MDP: Training curves of three algorithms
on Chain MDP tasks with different N . Training curves are averaged over multiple initializations of
both algorithms. Each iteration is 10 episodes.

To further investigate why Variational DQN can do systematic and efficient exploration of the
environment, we plot the state visit counts of Variational DQN and DQN for N = 32 in Figure 4.
Let cn be the visit count to state sn for 1 ≤ n ≤ N . In each episode, we set cn = 1 if the agent
ever visits sn and cn = 0 otherwise. The running average of cn over consecutive episodes is the
approximate visit probability pn of state sn under current policy. In Figure 4 we show visit probability
pn for n = 1 (locally optimal absorbing state), n = N (optimal absorbing state) and n = N

2 . The
probability pn for n = N

2 is meant to show if the agent ever explores the other half of the chain in
one episode.

At early stage of training (iterations ≤ 10), Variational DQN starts with and maintains a relatively
high probability of visiting all three states. This enables the agent to visit sN for sufficient number
of trials and converges to the optimal policy of keeping going to the right and reaching sN . On the
other hand, DQN occasionally has nontrivial probability of visiting sN

2
due to ε−greedy random

exploration. But since DQN does not have enough momentum to consistently go beyond sN
2

and
visit sN , visits to sN

2
are finally suppressed and the agent converges to the locally optimal policy in

s1. See Appendix for the comparison of visit counts for other sets of N and for NoisyNet.

7

(a) Variational DQN (b) DQN

Figure 4: Variational DQP vs. DQN in Chain MDPN = 32: state visit counts. Count cn = 1 for state
1 ≤ n ≤ N if state sn is ever visited in one episode. Running averages over multiple consecutive
episodes of cn produces pn, which is an approximate state visit probability under current policy. Each
probability curve pn is average over multiple initializations. Each iteration is 10 episodes.

6 Conclusion

We have proposed a framework to directly tackle the distribution of the value function parameters.
Assigning systematic randomness to value function parameters entails efficient randomization in
policy space and allow the agent to do efficient exploration. In addition, encouraging high entropy
over parameter distribution prevents premature convergence. We have also established an equivalence
between the proposed surrogate objective and variational inference loss, which allows us to leverage
black box variational inference machinery to update value function parameters.

Potential extension of our current work will be to apply similar ideas to Q-learning in continuous
control tasks and policy gradient methods. We leave this as future work.

References
[1] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians.

Journal of the American Statistical Association, Volume 112 - Issue 518.

[2] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. (2016).
Openai gym. Arxiv: 1606.01540.

[3] Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking deep reinforcement
learning for continuous control. International Conference on Machine Learning.

[4] Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, I., Blundell, C., and Legg, S. (2017). Noisy network for exploration. arXiv:1706.10295.

[5] Furmston, T. and Barber, D. (2010). Variational methods for reinforcement learning. Proceedings of the
13th International Conference on Artificial Intelligence, PMLR 9:241-248.

[6] Hasselt, H. V., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-learning.
Association for the Advancement of Artificial Intelligence (AAAI).

[7] Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck, F. D., and Abbeel, P. (2016). Vime: Variational
information maximizing exploration. Advances in Neural Information Processing Systems.

[8] Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. (2017). Automatic differentiation
variational inference. Journal of Machine Learning Research, 18(14):1-45.

[9] Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End to end training of deep visuomotor policies.
Journal of Machine Learning Research.

[10] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning. International Conference on Learning Representations.

8

[11] Lipton, Z. C., Li, X., Gao, J., Li, L., Ahmed, F., and Deng, L. (2016). Efficient dialogue policy learning
with bbq-networks. ArXiv: 1608.05081.

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. NIPS workshop in Deep Learning.

[13] Osband, I., Blundell, C., Pritzel, A., and Roy, B. V. (2016). Deep exploration via bootstrapped dqn.
arXiv:1602.04621.

[14] Osband, I. and Roy, B. V. (2015). Bootstrapped thompson sampling and deep exploration.
arXiv:1507:00300.

[15] Ranganath, R., Gerrish, S., and Blei, D. M. (2014). Black box variational inference. Proceedings of the
17th International Conference on Artificial Intelligence and Statistics (AISTATS).

[16] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay. International
Conference on Learning Representations.

[17] Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. (2015). Trust region policy optimization.
International Conference on Machine Learning.

[18] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering
the game of go using deep neural networks and tree search. Nature 529, 484-489 (28 Januaray 2016) doi:
10.1038/nature16961.

[19] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge University
Press.

[20] Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, Vol. 25, No. 3/4.

[21] Todorov, E. (2008). General duality between optimal control and estimation. Proceedings of the 47th IEEE
Conference on Decision and Control.

[22] Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., and Blei, D. M. (2017). Deep
probabilistic programming. International Conference on Learning Representations.

[23] Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016). Dueling network
architectures for deep reinforcement learning. arXiv: 1511.06581.

[24] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229-256.

9

7 Appendix

7.1 Derivation of Variational Inference Interpretation

Consider a bayesian network Qθ(s, a) with input (s, a) and parameter θ. The parameter θ has a prior p(θ). This
bayesian network produces mean for a Gaussian distribution with variance σ2 i.e. let dj be a sample

dj |θ ∼ N(Qθ(s, a), σ
2)

Given N samples D = {dj}Nj=1, the posterior p(θ|D) is in general not possible to evaluate. Hence we propose
a variational family distribution qφ(θ) with parameter φ to approximate the posterior. Variational inference
literature [15, 1] has provided numerous techniques to compute φ, yet for a flexible model Qθ(s, a) black box
variational inference is most scalable. We consider minimizing KL divergence between qφ(θ) and p(θ|D)

KL[qφ(θ)||p(θ|D)] = Eθ∼qφ(θ)
[
log

qφ(θ)

p(θ)p(D|θ)
]
+ log p(D) (9)

Let p(θ) be improper uniform prior. Also recall that

log p(D|θ) =
N∑
j=1

p(X|θ) = −
N∑
j=1

(Qθ(sj , aj)− dj)2

2σ2
+N log(

1√
2π

1

σ
)

Decompose the objective in (9) and omit constants, we get

Eθ∼qφ(θ)
[
log qφ(θ)

]
+ Eθ∼qφ(θ)

[N∑
j=1

(Qθ(sj , aj)− dj)2

2σ2

]
(10)

We then identify the first term as −H(qφ(θ)) and the second as expected Bellman error.

7.2 Variational Inference as approximate minimization of Bellman error

Assume the Bayesian network Qθ(s, a) produces Gaussian sample dj |θ ∼ N(Qθ(s, a), σ
2). Given samples

D = {dj}Nj=1, as N →∞

p(θ|D) ≈ argmin
q(θ)

Eθ∼q(θ)
[1
N

N∑
j=1

(Qθ(sj , aj)− dj)2
]

as the information in prior p(θ) is overwhelmed by data. In fact, p(θ|D) itself will also converge to MAPs.
Using variational family distribution qφ(θ) to approximate the posterior we expect

qφ(θ) ≈ argmin
q(θ)

Eθ∼q(θ)
[1
N

N∑
j=1

(Qθ(sj , aj)− dj)2
]

therefore any variational inference procedure that updates qφ(θ) to approximate the posterior p(θ|D) will
converge to an approximate minimizer of the Bellman error. In particular, variational inference using
KL[qφ(θ)||p(θ|D)] will result in an additional entropy bonus term in the surrogate objective, which in ef-
fect encourages dispersed policy distribution and efficient exploration.

7.3 Implementation Details

Since we have established an equivalence between the surrogate objective (Bellman error + entropy bonus) and
variational inference loss, we could leverage highly optimized implementation of probabilistic programming
packages to perform parameter update. In our experiment, we used Edward [22] to minimize the KL divergence
between variational distribution qφ(θ) and the posterior p(θ|D).

In classic control tasks, we train Variational DQN, DQN and NoisyNet agents for about 800 ∼ 1000 episodes
on each task. The learning rate is α = 10−3 or α = 10−2. The discount factor is γ = 0.99.

In Chain MDPs, we train all agents for about 2000 episodes for fixed N . The learning rate is α = 10−3 or
α = 10−2. The discount factor is γ = 1.0 (if discount factor γ < 1 is used, when N is large, going to state s1
will be optimal).

For all experiments, the batch size of each mini-batch sampled from the replay buffer is 64. The target network is
updated every 100 time steps. Each experiment is replicated multiple times using different random seeds to start
the entire training pipeline. DQN uses an exploration constant of ε = 0.1 throughout the training. Variational
DQN and NoisyNet both use component-wise gaussian distribution to parameterize distribution over value
function parameters, and they are all initialized according to recipes in [4]. Variational DQN is updated using
KLqp inference algorithm [1] with regularization constant λ = 2 · 10−2.

10

7.4 Recover DQN

We set the variational family distribution to be point distribution θ = δ(φ). Hence φ has the same dimension as
θ and is in effect θ itself. Then we apply Maximum a Posterior (MAP) inference to update φ. Under Gaussian
generative model of Qθ(s, a) and improper uniform prior, this is equivalent to minimizing Bellman error only.

7.5 Chain MDP: Visit Count for N = 8, 32 and N = 128

Below we present the state visit counts for N = 8, 32 and 128 for all three algorithms (Variational DQN, DQN
and NoisyNet). For small N (N = 8), Variational DQN and NoisyNet both identify the optimal path faster yet
display larger variance in performance, while DQN makes progress in a more steady manner.

For medium sized N (N = 32), Variational DQN still manages to converge to the optimal policy though the
initial exploration stage exhibits larger variance. DQN occasionally pass the middle point sN

2
(observed from

the green spike) but cannot reach sN . NoisyNet explores more efficiently than DQN since it sometimes converge
to optimal policy but is less stable than Variational DQN.

For large N (N = 128), Variational DQN takes more time to find the optimal policy but still converges within
small number of iterations. On the other hand, both DQN and NoisyNet get stuck.

(a) Variational DQN N = 8 (b) Variational DQN N = 32 (c) Variational DQN N = 128

(d) DQN N = 8 (e) DQN N = 32 (f) DQN N = 128

(g) NoisyNet N = 8 (h) NoisyNet N = 32 (i) NoisyNet N = 128

Figure 5: Variational DQP vs. DQN vs. NoisyNet in Chain MDP N = 8, 32, 128: state visit counts.
Count cn = 1 for state 1 ≤ n ≤ N if state sn is ever visited in one episode. Running averages over
multiple consecutive episodes of cn produces pn, which is an approximate state visit probability
under current policy. Each probability curve pn is average over multiple initializations. Each iteration
is 10 episodes.

Interpretation as Approximate Thompson Sampling

Thompson sampling [20] is an efficient exploration scheme in multi-arm bandits and MDPs. At each step,
Variational DQN maintains a distribution over action-value function Qθ(s, a). The algorithm proceeds by

11

sampling a parameter θ ∼ qφ and then select action at = argmaxaQθ(st, a). This sampling differs from exact
Thompson sampling in two aspects.

• The sampling distribution qφ is not the posterior distribution of θ given data but only a variational
approximation.

• During mini-batch training, the data D used to update the posterior p(θ|D) is not generated by exact
action-value function Q∗(s, a) but the target network Qθ−(s, a).

Hence the quality of this exact Thompson sampling depends on the quality of both approximation qφ(θ) ≈
p(θ|D) and Qθ−(s, a) ≈ Q∗(s, a), the second of which is in fact our very goal. When the approximation is not
perfect, this approximate sampling scheme can still be beneficial to exploration.

12

	Background
	Variational Inference

	Related Methods
	Proposed Algorithm
	Formulation
	Variational Inference Interpretation
	Algorithm

	Testing Environments
	Classic Control Tasks
	Chain MDP

	Experiments
	Classic Control Tasks
	Chain MDP

	Conclusion
	Appendix
	Derivation of Variational Inference Interpretation
	Variational Inference as approximate minimization of Bellman error
	Implementation Details
	Recover DQN
	Chain MDP: Visit Count for N=8,32 and N=128

