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Bernhard Schölkopf‡ Richard E. Turner†

†Department of Engineering, University of Cambridge, Cambridge, UK
‡Max Planck Institute for Intelligent Systems, Tübingen, Germany

∗ MB and MR contributed equally to this work

1 Introduction

K-shot learning has enjoyed a recent resurgence in the academic community [1–5]. Current state-of-
the-art methods use complex deep learning architectures and claim that learning good systems for
k-shot learning requires episodic training on simulated data for a specific task and number of shots.
In contrast, this paper proposes a general framework based upon the combination of a deep feature
extractor, trained on batch classification, and traditional probabilistic modelling. It subsumes two
existing approaches in this vein [5, 6], and is motivated by similar ideas from multi-task learning [7].
We show that even a simple probabilistic model achieves state-of-the-art on a standard k-shot learning
dataset by a large margin.

Our basic setup is as follows: a convolutional neural network (CNN) is trained on a large labelled
training set. This learns a rich representation of images at the top hidden layer of the CNN. Accu-
mulated knowledge about classes is embodied in the top layer softmax weights of the network. This
information is extracted by training a probabilistic model on these weights. K-shot learning can then
1) use the representation of images provided by the CNN as input to a new softmax function, and 2)
learn the new softmax weights by combining prior information about their likely form derived from
the original dataset with the k-shot likelihood.

2 Probabilistic k-shot learning
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Figure 1: left: Shared feature extractor Φϕ and separate top linear layers W and W̃ with corresponding
softmax units on old and new classes. right: Graphical model for probabilistic k-shot learning.

K-shot learning task. We receive a large dataset D̃ = {ũi, ỹi}Ñi=1 of images ũi and labels ỹi ∈
{1, . . . , C̃} and a small dataset D = {ui, yi}Ni=1 of C new classes, yi ∈ {C̃ + 1, C̃ + C}, with k
images from each new class. Our goal is to construct a model that can leverage the information in
D̃ and D to predict well on unseen images u∗ from the new classes; the performance is evaluated
against ground truth labels y∗.

Our framework comprises four phases that we refer to as 1) representational learning, 2) concept
learning, 3) k-shot learning, and 4) k-shot testing, cf. Fig. 1 (right).
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Feature extractor and representational learning. We use a CNN Φϕ based on ResNet-34 [8] or
VGG [9] as feature extractor. Its last hidden layer activations are mapped to two sets of softmax output
units corresponding to the C̃ classes in the large dataset D̃ and the C classes in the small dataset D,
respectively. These separate mappings are parametrized by weight matrices W̃ for the old and W for
the new classes. For representational learning (phase 1) the large dataset D̃ is used to train the CNN
Φϕ using standard deep learning optimisation approaches. The CNN remains fixed from then on.

Probabilistic modelling. The next goal is to build a probabilistic method for k-shot prediction that
transfers structure from the trained softmax weights W̃ to the new k-shot softmax weights W and
combines it with the k-shot training examples. Given a test image’s feature representation x∗ = Φ(u∗)
during k-shot testing (phase 4), the prediction for the new label y∗ is found by averaging the softmax
outputs over the posterior distribution of the softmax weights given the two datasets,

p(y∗ |x∗,D, D̃) =

∫
p(y∗ |x∗,W)p(W | D, D̃)dW. (1)

To this end, we consider a general class of probabilistic models in which the two sets of softmax
weights are generated from shared hyperparameters θ, so that p(W̃,W, θ) = p(θ)p(W̃|θ)p(W|θ), see
Fig. 1 (right). In this way, the large dataset D̃ contains information about θ that in turn constrains the
new softmax weights W. We further assume that there is very little uncertainty in W̃ once the large
initial training set is observed and so a maximum a posteriori (MAP) estimate, as returned by standard
deep learning, suffices. As a consequence of this approximation and the structure of the model, the
original data D̃ are not required for the k-shot learning phase. Instead, the weights learned from these
data, W̃MAP, can themselves be treated as observed data, which induce a predictive distribution over
the k-shot weights p(W|W̃MAP) via Bayes’ rule. We refer to this step as concept learning (phase 2).

During k-shot learning (phase 3) we treat this predictive distribution as our new prior on the weights
and again use Bayes’ rule to combine it with the softmax likelihood of the k-shot training examples
D to obtain a new posterior over the weights that now also incorporates D,

p(W | D, D̃) ≈ p(W | D, W̃MAP) ∝ p(W | W̃MAP)

N∏
n=1

p(yn|xn,W). (2)

Finally, we approximate Eq. (2) by its MAP estimate WMAP, so that the integral in Eq. (1) becomes
p(y∗ |x∗,D, D̃) ≈ p(y∗ |x∗,D, W̃MAP) ≈ p(y∗ |x∗,WMAP).

Our method. We use a simple Gaussian model p(w|θ) = N (w|µ,Σ) with its conjugate Normal-
inverse-Wishart prior p(θ) = p(µ,Σ) = NIW(µ,Σ |µ0, κ0,Λ0, ν0), and estimate MAP solutions
for the parameters θMAP = {µMAP,ΣMAP}. The approximations discussed lead to p(W | D̃) ≈
p(W | W̃MAP) = N (W |µMAP,ΣMAP).

Relationship to logistic regression. Standard L2-regularised logistic regression corresponds to
the MLE solution of the softmax likelihood p(yn |xn,W) = softmax(Wxn) with L2 penalty
on the weights with inverse regularisation strength 1/Creg. Its solution corresponds to the MAP
solution of a model with isotropic Gaussian prior on the weights with zero mean: p(W | D) ∝
N (W|0, 12CregI)

∏N
n=1 p(yn |xn,W) and is closely related to the above Gaussian model with MAP

inference. However, the probabilistic framework has several advantages: i) modelling assumptions
and approximations are made explicit, ii) it is strictly more general and can incorporate non-zero
means µMAP, iii) the probabilistic interpretation provides a principled way of choosing the regulari-
sation constant using the trained weights W̃: Creg = 2σ2

W̃
, where σ2

W̃
is the empirical variance of the

weights W̃MAP. In k-shot learning, alternative (frequentist) methods such as cross-validation suffer
in the face of the small number of k-shot examples, and are not applicable in 1-shot learning at all.

3 Experiments

Dataset. miniImageNet has become a standard testbed for k-shot learning and is derived from the
ImageNet ILSVRC12 dataset [10] by extracting 100 of the 1000 classes. Each class contains 600
images downscaled to 84×84 pixels. We use the 100 classes (64 train, 16 validation, 20 test) proposed
by [11]. As our approach does not require a validation set, we use both the training and validation
data for the representational learning.
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Method 1-shot 5-shot

ResNet-34 + Isotropic Gauss (ours) 56.3± 0.4% 73.9± 0.3%

Matching Networks (reimpl., 1-shot) 46.8 ± 0.5% -
Matching Networks (reimpl., 5-shot) - 62.7 ± 0.5%
Meta-Learner LSTM [11] 43.4 ± 0.8% 60.6 ± 0.7%
Prototypical Nets (1-shot) [4] 49.4 ± 0.8% 65.4 ± 0.7%
Prototypical Nets (5-shot) [4] 45.1 ± 0.8% 68.2 ± 0.7%

Table 1: Accuracy on
5-way classification on
miniImageNet. Our best
method, an isotropic Gaus-
sian model using ResNet-34
features, consistently outper-
forms all competing methods
by a wide margin.

Figure 2: Results on miniImageNet. (left): Results using ResNet-34 as feature extractor. (right):
Comparison of different network architectures and training set sizes on the k-shot learning task.

Overall k-shot performance. We report performance on the miniImageNet dataset in Tab. 1
and Fig. 2. Our best method uses a modified ResNet-34 with 256 features, trained with all 600
examples per training class, as feature extractor and a simple isotropic Gaussian model on the weights
for concept learning. Despite its simplicity, our method achieves state-of-the-art and beats prototypical
networks by a wide margin of about 6%. The baseline methods using the same feature extractor are
also state-of-the-art compared to prototypical networks and both logistic regressions show compa-
rable accuracy to our methods except for on 1-shot learning. In terms of log-likelihoods, Log Reg
(C = 2σ2

W̃
) fares slightly better, whereas Log Reg (cv) is much worse.

Deeper features lead to better k-shot learning. We investigate the influence of different feature
extractors of increasing complexity in Fig. 2 (right): i) VGG style network (500 train images per class),
ii) ResNet-34 (500 per class), and iii) a ResNet-34 (all 600 per class). We find that the complexity of the
feature extractor as well as training set size consistently correlate with the accuracy at k-shot time. For
instance, on 5-shot, Gauss (iso) achieves a significant increase of almost 10%. Importantly, this result
implies that training specifically for k-shot learning is not necessary for achieving high generalisation
performance on this k-shot problem. On the contrary, training a powerful deep feature extractor on
batch classification using all of the available training data, then building a simple probabilistic model
using the learned features and weights achieves state-of-the-art. While not presented in this paper, the
obtained classifiers are well calibrated at k-shot time, and generalise well to an online setting.

4 Conclusion

We present a probabilistic framework for k-shot learning that exploits the powerful features and class
information learned by a neural network on a large training dataset. Probabilistic models are then used
to transfer information in the network weights to new classes. Experiments on miniImageNet using a
simple Gaussian model within our framework achieve state-of-the-art for 1-shot and 5-shot learning by
a wide margin and, at the same time, return well calibrated predictions. This finding is contrary to the
current belief that episodic training is necessary to learn good k-shot features and puts the success of
recent complex deep learning approaches to k-shot learning into context. The new approach is flexible
and extensible, being applicable to general discriminative models and k-shot learning paradigms. The
Gaussian model is closely related to regularised logistic regression, but provides a principled and
fully automatic way to regularise. This is particularly important in k-shot learning, as it is a low-data
regime, in which cross-validation performs poorly and where it is important to train on all available
data, rather than using validation sets.
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