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1 Introduction

K-shot learning has enjoyed a recent resurgence in the academic community [1-5]. Current state-of-
the-art methods use complex deep learning architectures and claim that learning good systems for
k-shot learning requires episodic training on simulated data for a specific task and number of shots.
In contrast, this paper proposes a general framework based upon the combination of a deep feature
extractor, trained on batch classification, and traditional probabilistic modelling. It subsumes two
existing approaches in this vein [5, 6], and is motivated by similar ideas from multi-task learning [7].
We show that even a simple probabilistic model achieves state-of-the-art on a standard k-shot learning
dataset by a large margin.

Our basic setup is as follows: a convolutional neural network (CNN) is trained on a large labelled
training set. This learns a rich representation of images at the top hidden layer of the CNN. Accu-
mulated knowledge about classes is embodied in the top layer softmax weights of the network. This
information is extracted by training a probabilistic model on these weights. K-shot learning can then
1) use the representation of images provided by the CNN as input to a new softmax function, and 2)
learn the new softmax weights by combining prior information about their likely form derived from
the original dataset with the k-shot likelihood.

2 Probabilistic k-shot learning
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Figure 1: left: Shared feature extractor ®, and separate top linear layers W and W with corresponding
softmax units on old and new classes. right: Graphical model for probabilistic k-shot learning.

K-shot learning task. We receive a large dataset D = {u;, ﬂz}fv;l of images 1, and labels y; €
{1,...,C} and a small dataset D = {u;,y;}V., of C new classes, y; € {C + 1,C + C}, with k

images from each new class. Our goal is to construct a model that can leverage the information in

Dand D to predict well on unseen images u* from the new classes; the performance is evaluated
against ground truth labels y*.

Our framework comprises four phases that we refer to as 1) representational learning, 2) concept
learning, 3) k-shot learning, and 4) k-shot testing, cf. Fig. 1 (right).
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Feature extractor and representational learning. We use a CNN &, based on ResNet-34 [8] or
VGG [9] as feature extractor. Its last hidden layer activations are mapped t0 two sets of softmax output

units corresponding to the C classes in the large dataset D and the C classes in the small dataset D,
respectively. These separate mappings are parametrized by weight matrices W for the old and W for
the new classes. For representational learning (phase 1) the large dataset D is used to train the CNN
@, using standard deep learning optimisation approaches. The CNN remains fixed from then on.

Probabilistic modelling. The next goal is to build a probabilistic method for k-shot prediction that

transfers structure from the trained softmax weights W to the new k-shot softmax weights W and
combines it with the k-shot training examples. Given a test image’s feature representation x* = ®(u*)
during k-shot testing (phase 4), the prediction for the new label y* is found by averaging the softmax
outputs over the posterior distribution of the softmax weights given the two datasets,

p(y* |x*,D,D) = /p(y* |x*, W)p(W | D, D)dW. (1)

To this end, we consider a general class of probabilistic models in which the two sets of softmax
weights are generated from shared hyperparameters 6, so that p(W7 W, 0) = p(0) p(W\H)p(WW), see
Fig. 1 (right). In this way, the large dataset D contains information about @ that in turn constrains the
new softmax weights W. We further assume that there is very little uncertainty in W once the large
initial training set is observed and so a maximum a posteriori (MAP) estimate, as returned by standard
deep learning, suffices. As a consequence of this approximation and the structure of the model, the
original data D are not required for the k-shot learning phase. Instead, the weights learned from these
data, WMAP, can themselves be treated as observed data, which induce a predictive distribution over
the k-shot weights p(W|WMAP) via Bayes’ rule. We refer to this step as concept learning (phase 2).

During k-shot learning (phase 3) we treat this predictive distribution as our new prior on the weights
and again use Bayes’ rule to combine it with the softmax likelihood of the k-shot training examples
D to obtain a new posterior over the weights that now also incorporates D,

N
p(W|D, D) & p(W | D, WMAF) oc p(W [WMAP) TT p(ynlxn, W). 2)
n=1
Finally, we appr0x1mate Eq. (2) by its MAP estimate WMAP 5o that the integral in Eq. (1) becomes
p(y* |x*,D,D) = p(y* | x*, D, WMAP) & p(y* [ x*, WMAP),

Our method. We use a simple Gaussian model p(w|0) = N (w|u, 3) with its conjugate Normal-
inverse-Wishart prior p(0) = p(u, X) = NIW(u, X | po, ko, Ao, vo), and estimate MAP solutions

for the parameters OMAP = {MAP SIMAPY “The approximations discussed lead to p(W | 235 ~
p(W | WMAP) — N(W | MMAP’ EMAP>.

Relationship to logistic regression. Standard L,-regularised logistic regression corresponds to
the MLE solution of the softmax likelihood p(y, | x,, W) = softmax(Wx,) with Lo penalty
on the weights with inverse regularisation strength 1/C\cg. Its solution corresponds to the MAP
solution of a model with isotropic Gaussian prior on the weights with zero mean: p(W | D)

N (W0, £ Cregl) Hgil P(Yn | Xn, W) and is closely related to the above Gaussian model with MAP
inference However, the probabilistic framework has several advantages: i) modelling assumptions
and approximations are made explicit, ii) it is strictly more general and can incorporate non-zero

means zMAP | iii) the probabilistic interpretation provides a principled way of choosing the regulari-

sation constant using the trained weights W: Cieq = QO‘QW, where 0%\7 is the empirical variance of the

weights WMAP In k-shot learning, alternative (frequentist) methods such as cross-validation suffer
in the face of the small number of k-shot examples, and are not applicable in 1-shot learning at all.

3 Experiments

Dataset. minilmageNet has become a standard testbed for k-shot learning and is derived from the
ImageNet ILSVRC12 dataset [10] by extracting 100 of the 1000 classes. Each class contains 600
images downscaled to 84 x 84 pixels. We use the 100 classes (64 train, 16 validation, 20 test) proposed
by [11]. As our approach does not require a validation set, we use both the training and validation
data for the representational learning.



Method 1-shot 5-shot Table 1: A_CCUTE}CY on
: 5-way classification on
ResNet-34 + Isotropic Gauss (ours) 56.3+0.4% 73.94+0.3%

minilmageNet. Our best
Matching Networks (reimpl., 1-shot) ~ 46.8 & 0.5% method, an isotropic Gaus-
Matching Networks (reimpl., 5-shot)

62.7 £ 0.5% sian model using ResNet-34

Meta-Learner LSTM [11] 434+ 0.8% 60.6 + 0.7% features, Consistent]y outper-
Prototypical Nets (1-shot) [4] 49.4 4+ 0.8% 65.4 £+ 0.7% forms all competing methods
Prototypical Nets (5-shot) [4] 45.1 = 0.8% 68.2 + 0.7%

by a wide margin.
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Figure 2: Results on minilmageNet. (left): Results using ResNet-34 as feature extractor. (right):
Comparison of different network architectures and training set sizes on the k-shot learning task.

Overall k-shot performance. We report performance on the minilmageNet dataset in Tab. 1
and Fig. 2. Our best method uses a modified ResNet-34 with 256 features, trained with all 600
examples per training class, as feature extractor and a simple isotropic Gaussian model on the weights
for concept learning. Despite its simplicity, our method achieves state-of-the-art and beats prototypical
networks by a wide margin of about 6%. The baseline methods using the same feature extractor are
also state-of-the-art compared to prototypical networks and both logistic regressions show compa-
rable accuracy to our methods except for on 1-shot learning. In terms of log-likelihoods, Log Reg
C = 20‘27[7) fares slightly better, whereas Log Reg (cv) is much worse.

Deeper features lead to better k-shot learning. We investigate the influence of different feature
extractors of increasing complexity in Fig. 2 (right): i) VGG style network (500 train images per class),
ii) ResNet-34 (500 per class), and iii) a ResNet-34 (all 600 per class). We find that the complexity of the
feature extractor as well as training set size consistently correlate with the accuracy at k-shot time. For
instance, on 5-shot, Gauss (iso) achieves a significant increase of almost 10%. Importantly, this result
implies that training specifically for k-shot learning is not necessary for achieving high generalisation
performance on this k-shot problem. On the contrary, training a powerful deep feature extractor on
batch classification using all of the available training data, then building a simple probabilistic model
using the learned features and weights achieves state-of-the-art. While not presented in this paper, the
obtained classifiers are well calibrated at k-shot time, and generalise well to an online setting.

4 Conclusion

We present a probabilistic framework for k-shot learning that exploits the powerful features and class
information learned by a neural network on a large training dataset. Probabilistic models are then used
to transfer information in the network weights to new classes. Experiments on minilmageNet using a
simple Gaussian model within our framework achieve state-of-the-art for 1-shot and 5-shot learning by
a wide margin and, at the same time, return well calibrated predictions. This finding is contrary to the
current belief that episodic training is necessary to learn good k-shot features and puts the success of
recent complex deep learning approaches to k-shot learning into context. The new approach is flexible
and extensible, being applicable to general discriminative models and k-shot learning paradigms. The
Gaussian model is closely related to regularised logistic regression, but provides a principled and
fully automatic way to regularise. This is particularly important in k-shot learning, as it is a low-data
regime, in which cross-validation performs poorly and where it is important to train on all available
data, rather than using validation sets.
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