Unsupervised Deep Structure Learning
by Recursive Independence Testing

Raanan Y. Yehezkel Rohekar, Guy Koren, Shami Nisimov, Gal Novik
Intel Corporation

Abstract

We introduce a principled approach for unsupervised structure learning of deep,
feed-forward, neural networks. We propose a new interpretation for depth and
inter-layer connectivity where conditional independencies in the input distribution
are encoded hierarchically in the network structure. Neurons in deeper layers
encode low-order (small condition sets) independencies and have a wide scope of
the input, whereas neurons in the first layers encode higher-order (larger condition
sets) independencies and have a narrower scope. Thus, the depth of the network is
equal to the maximal order of independence in the input distribution. Moreover,
this results in structures allowing neurons to connect to neurons in any deeper layer,
skipping intermediate layers. The proposed algorithm constructs three main graphs:
1) a deep generative-latent-graph, learned recursively from data using a conditional
independence test, 2) a stochastic inverse, and 3) a discriminative graph constructed
from the stochastic inverse. We prove that conditional-dependency relations in the
learned generative latent graph are preserved in both the stochastic inverse and the
class-conditional discriminative graphs. Finally, a deep neural network structure is
constructed from the discriminative graph. We demonstrate on image classification
benchmarks that the deepest layers (convolutional and dense layers) of common
convolutional networks can be replaced by significantly smaller learned structures,
achieving high classification accuracy. Our structure learning algorithm requires a
small computational cost and runs efficiently on a standard desktop CPU.

1 Introduction

In this paper, we focus on the design of neural network topology—structure learning. Generally,
exploration of this design space is a time consuming iterative process that requires close supervision
by a human expert. Recent studies have focused on automating the exploration of the design space,
posing it as a hyper-parameter optimization problem and proposing various approaches to solve it.
For example, methods based on reinforcement-learning (Zoph & Lel 2016} |Zoph et al., 2017; Real
et al., 2017; Baker et al.| [2016) and evolutionary methods (Real et al., [2017; [Miikkulainen et al.,
2017). Common to all these recent studies is the fact that structure learning is done in a supervised
manner and requires large compute resources, rendering the solution unfeasible for many applications
given limited compute and time resources.

The problem of model structure learning has been widely researched for many years in the proba-
bilistic graphical models domain. Specifically, Bayesian networks for density estimation and causal
discovery (Pearl| [2009; [Spirtes et al.,|2000). Two main approaches were studied: score-based (search-
and-score) and constraint-based. Score-based approaches combine a scoring function (Cooper &
Herskovits, |[1992; Ripleyl [2007)) with a search strategy, such as greedy equivalence search (Chickering
2002). |Adams et al.|(2010) introduced an algorithm for sampling deep belief networks (generative
model) and demonstrated its applicability to image datasets.

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.

Constraint-based approaches (Pearl, 2009; |Spirtes et al., 2000) find the optimal structures in the
large sample limit by testing conditional independence between variables. They are generally faster
than score-based approaches (Yehezkel & Lerner, [2009) and have a well-defined stopping criterion
(Dash & Druzdzell 2003). However, these methods are sensitive to errors in the independence tests,
especially in the case of high-order conditional-independence tests and small training sets.

Motivated by these methods, we propose a new approach for learning the structure of deep neural
networks in an unsupervised manner. We do not claim to identify the presence of confounders and
their inter-relations as in [Elidan et al.| (2001)); [Silva et al.| (2006); /Asbeh & Lerner (2016)). Instead,
we augment a fully observed Bayesian network with latent variables, while preserving conditional
dependence.

2 Recursive Deep Structure Learning

Preliminaries. Consider X = { X}, a set of observed (input) random variables, H a set of latent
variables, and Y a class variable. Our algorithm constructs three graphical models and an auxiliary
graph. Each variable is represented by a single node, and a single edge may connect two distinct
nodes. Graph G is a generative DAG defined over the observed and latent variables X U H. Graph
Gy 1s called a stochastic inverse of G. Graph Gp is a discriminative model defined over the observed,
latent, and class variables X U H UY. An auxiliary graph Gx is defined over X (a CPDAG; a
Markov equivalence class) and is generated and maintained as an internal state of the algorithm. The
parents set of a node X in G is denoted Pa(X; G). The order of an independence relation is defined
to be the condition set size. For example, if X; and X5 are independent given X3, X4, and X5,
denoted X7 1l X5|{X3, X4, X5}, then the independence order is three.

First, G, a deep generative latent structure, is learned from data (using a conditional independence
test). The key idea is to recursively introduce a new and deeper latent layer by testing n-th order
conditional independence (among X) and connect it to latent layers created by subsequent recursive
calls that test conditional independence of order n + 1. [Yehezkel & Lerner| (2009) introduced an
efficient algorithm (RAI) for constructing a CPDAG over X by a recursive application of conditional
independence tests with increasing condition set sizes. Our algorithm is based on this framework for
updating the auxiliary graph Gx. Our proposed algorithm is defined in Algorithm[T|(a flow chart is
given in Appendix [A). A 2-layer toy-example is given in Figure[T]

The algorithm starts with n = 0, Gx a complete graph, and a set of exogenous nodes X o, = (). The
set X o is exogenous to Gx and consists of parents of X.

The function IncreaseResolution (Algorithm[THine 5) disconnects (in Gx) conditionally indepen-
dent variables in two steps. First, it tests dependency between X o, and X, i.e., X AL X’|S for every
connected pair X € X and X' € X given a condition set S C {X¢x U X } of size n. Next, it
tests dependency within X, i.e., X; AL X;|S for every connected pair X;, X; € X given a condition
set S C {Xex U X} of size n. After removing the corresponding edges, the remaining edges are
directed by applying two rules (Pearl, 2009; Spirtes et al.l [2000). First, v-structures are identified
and directed. Then, edges are continually directed, by avoiding the creation of new v-structures and
directed cycles, until no more edges can be directed. Following the terminology of|Yehezkel & Lerner
(2009), we say that this function increases the graph d-separation resolution from n — 1 to n.

The function SplitAutonomous (Algorithm[I}Hine 6) identifies autonomous sets, one descendant
set Xp and K ancestor sets X oq,..., X Ak in two steps. First, the nodes having the lowest
topological order are grouped into X p. Then, X is removed (temporarily) from the graph revealing
unconnected sub-structures. The number of unconnected sub-structures is denoted K and the nodes
of each sub-structure is denoted X o; (¢ € {1... K}).

An autonomous set in Gx includes all its nodes’ parents (complying with the Markov property) and
therefore a corresponding latent structure can be further learned independently, using a recursive call.
Thus, the algorithm is called recursively and independently for the ancestor sets (Algorithm [I]lines
7-8), and then for the descendant set, treating the ancestor sets as exogenous (Algorithm [T]line 9).

Each recursive call returns a latent structure for each autonomous set. Recall that each latent structure
encodes a generative distribution over the observed variables where layer H ("+1) the last added layer
(parentless nodes), is a representation of the input X’ C X. Thus, latent variables are introduced as

parents of the H (n+1) layers (Algorithm [1{lines 11-13).

1

10

11

13

14

Algorithm 1: Recursive Latent Structure Learning (multi-layer)
RecursiveLatStruct (Gx, X, X ex,n)

Input: an initial DAG Gx over observed X & exogenous nodes X o and a desired resolution n.
Output: G, a latent structure over X and H
if the maximal indegree of Gx (X)) is below n + 1 then > exit condition
G <—an observed layer X
return G
G’ <—IncreaseResolution(Gx,n) > n-th order independencies
{Xp,Xa1,...,Xag} ¢—SplitAutonomous (X, G%) > identify autonomies
forie {1...K}do
L Ga; <— RecursiveLatStruct (G, X a;, Xex,n + 1) > a recursive call
Gp <— RecursiveLatStruct (G, Xp, Xex U{X a;} iy, n+ 1) > a recursive call
G <— Group(Gp,Ga1,.--,9aK) > merge results
create K latent variables H™) = {H{m, cey Hgl)} inG > create a latent layer
set each H™ to be a parent of { H """ U HJ'TV} > connect
where H 5 E-"H) and H g”l) are the sets of parentless latents in Ga; and Gp, respectively.
| return G

It is important to note that conditional independence is tested only between input variables X', and
condition sets do not include latent variables. Conditioning on latent variables or testing independence
between them is not required.

Ce® y

Figure 1: An example of learning a 2-layer latent generative model. [a] An example of a “ground-
truth” Bayesian network encoding the distribution that will be discovered by the algorithm. Recall
that our algorithm learns a deep generative model that can mimic this DAG (not necessarily equivalent
to it). [b] Gx after marginal independence testing (n = 0). [c] Gx after a recursive call to learn the
structure of nodes {C, D, E'} with n = 2. Exit condition is met in subsequent recursive calls and
thus latent variables are added to G at n = 2 [d], and then at n = 0 [e] (the final structure).

Next, a stochastic inverse Gy, (Stuhlmiiller et al.l 2013} [Paige & Wood, 2016)), such that Gy,
can mimic G over all the variables (preserves conditional dependence over latents and observed;
Proposition|[T] Section [3), is constructed in two steps:

1. Invert all G edges (invert inter-layer connectivity).

2. Connect each pair of latent variables, sharing a common child in G, with a bi-directional
edge.

We avoid limiting G, to a DAG. Instead, we consider it to be a projection of another latent structure
(Pearl, 2009). That is, we assume the presence of additional hidden variables @) that are not in Gy,
but induce dependencyﬂ among H, which are represented by the bi-directional edges.

Finally, a discriminative graph Gp is constructed by replacing bi-directional dependency relations in
Omy (induced by @) with explaining-away relations, by adding the observed class variable Y. Node
Y is setin Gp to be the common child of the leaves in Gy, (latents introduced after testing marginal
independencies in X). See an example in Figure[2] This ensures the preservation of conditional
dependency relations in Gry,y. That is, Gp can mimic Gr,, over X and H given Y (Section[3). A
neural network is then constructed by replacing each latent variable with a dense neural network layer
and the class variable with an output layer (e.g., a softmax layer). See one result in Figure 3]

'For example, “interactive forks” (Pearl, 2009).

[a] [b]

Figure 2: An example of the three graphs constructed by our algorithm: [a] a generative deep latent
structure, [b] its stochastic inverse, and [c] a discriminative structure (class node Y is added).

3 Preservation of Conditional Dependence

Conditional dependence relations encoded by the genrative structure G are preserved by the dis-
criminative structure Gp conditioned on the class Y. That is, Gp conditioned on Y can mimic G;
denoted by preference relation G < Gp|Y. While the parameters of a model can learn to mimic
conditional independence relations that are not expressed by the graph structure, they are not able to
learn conditional dependence relations (Pearl, [2009).

Proposition 1. Graph Gy, preserves all conditional dependencies in G (i.e., G < Gryy).

Proof. Graph Gr,,, can be constructed using the procedures described by [Stuhlmiiller et al.| (2013))
where nodes are added, one-by-one, to Gy, in a reverse topological order (lowest first) and connected
(as a child) to existing nodes in Gy, that d-separate it, according to G, from the remainder of Gyy,, .
Paige & Wood (2016) showed that this method ensures the preservation of conditional dependence
G =< Gny. We set an equal topological order to every pair of latents (H;, H,) sharing a common child
in G. Hence, jointly adding nodes H; and H; to G, connected by a bi-directional edge, requires
connecting them (as children) only to their children and the parents of their children (H; and H;
themselves, by definition) in G. That is, without loss of generality, node H; is d-separated from the
remainder of Gry, given its children in G and H;. |

It is interesting to note that the stochastic inverse Gy, constructed without adding inter-layer
connections, preserves all conditional dependencies in G.

Proposition 2. Graph Gp, conditioned on'Y, preserves all conditional dependencies in Gy,
(i.e., Gy = Gp|Y).

Proof. 1t is only required to prove that the dependency relations that are represented by bi-directional
edges in Gy, are preserved in Gp. The proof follows directly from the d-separation criterion (Pearl,
2009). A latent pair {H,H'} ¢ H ("+1) " connected by a bi-directional edge in Gy, cannot be
d-separated by any set containing Y, as Y is a descendant of a common child of H and H'. In
Algorithmline 12, alatent in H (") i connected, as a child, to latents H (”“), andYto H?, m

We formulate Gy, as a projection of another latent model (Pearl, 2009) where bi-directional edges
represent dependency relations induced by latent variables . We construct a discriminative model
by considering the effect of @ as an explaining-away relation induced by a class node Y. Thus,
conditioned on Y, the discriminative graph Gp, preserves all conditional (and marginal) dependencies
in gInv-

Proposition 3. Graph Gp, conditioned on'Y, preserves all conditional dependencies in G

(ie, G = Gp).
Proof. 1t immediately follows from Propositions 1 & 2 that G < Gy, < Gp conditionedon Y. W

Thus G < Giyy =< Gp conditioned on Y.

. gather
@ dense
> concat

——_ copy

Figure 3: An example of a structure learned by our algorithm (classifying MNIST digits). Neurons
in a layer may connect to neurons in any deeper layer. Depth is determined automatically. Each
gather layer selects a subset of the input, where each input variable is gathered only once. A neural
route, starting with a gather layer, passes through densely connected layers where it may split (copy)
and merge (concatenate) with other routes in correspondence with the hierarchy of independencies
identified by the algorithm. All routes merge into the final output layer (e.g., a softmax layer).

4 Experiments

We evaluate the quality of learned structures using five image classification benchmarks. We compare
the learned structures to common topologies (and simpler hand-crafted structures), which we call
“vanilla topologies”, with respect to network size and classification accuracy. The benchmarks and
vanilla topologies are described in Table[T] Our structure learning algorithm is implemented using the
Bayesian network toolbox (Murphy, 2001) and runs efficiently on a standard desktop CPU (excluding
NN parameters learning). Our main result is given in Table 2} A detailed description and an extended
evaluation is given in Appendix [B] For SVHN only the basic training data is used, i.e., 13% of the
available training data, and for ImageNet 5% of the training data is used.

Our structure learning algorithm runs efficiently on a standard desktop CPU, while providing struc-
tures with competitive classification accuracies. For example, the lowest classification error rate
achieved by our unsupervised algorithm for CIFAR 10 is 4.58% with a network of size 6M (WRN-40-
4 row in Table |Z[) For comparison, the NAS algorithm (Zoph & Lel[2016) achieves error rates of 5.5%
and 4.47% for networks of sizes 4.2M and 7.1M, respectively, and requires optimizing thousands of
networks using hundreds of GPUs.

5 Conclusions

We presented a principled approach for learning, in an unsupervised manner, the structure of deep
neural networks. The resulting structures provide a hierarchical encoding of the independencies in
the input distribution that we identified by the algorithm . Interestingly, this results in a network
containing “neural routes”, passing through densely connected layers, where they may split (copy)
and merge (concatenate) with other routes in correspondence with the hierarchy of independencies
identified by the (unsupervised) algorithm. Moreover, neurons in a layer may connect to neurons in
any deeper layer, and the network depth is determined automatically.

We demonstrated that our algorithm learns small structures, and provides high classification accuracies
for common image classification benchmarks. It is also demonstrated that while convolution layers
are very useful at exploiting domain knowledge, such as spatial smoothness, translational invariance,
and symmetry, they are mostly outperformed by a learned structure for the deeper layers. Moreover,
while the use of common topologies for a variety of classification tasks is computationally inefficient,
we would expect our approach to learn smaller and more accurate networks for each classification
task, uniquely.

As only unlabeled data is required for learning the structure, we expect our approach to be practical
for many domains, beyond image classification, such as knowledge discovery, and plan to explore the
interpretability of the learned structures.

benchmark vanilla topology

dataset topology description size

MNIST (LeCun et all [[998) None learn a structure directly from pixels
MNIST-Man 32-64-FC:128 127K

SVHN (Netzer et all OT1) Maxout NiN (Chang & Chenl|[2015)) 1.6M
SVHN-Man 16-16-32-32-64-FC:256 105K

CIFAR 10 (Krizhevsky & Hinton 2009) VGG-16-D (Simonyan & leserman,. 2014) 15M
WRN-40-4 (Zagoruyko & Komodakis| |2016) IM

CIFAR 100 (Krizhevsky & Hinton, 2009) VGG-16-D (Simonyan & Zisserman, 2014) 15M

ImageNet (Deng et al., 2009) AlexNet (Krizhevsky et al.,2012) 61M

Table 1: Benchmarks and vanilla topologies. MNIST-Man and SVHN-Man topologies were manually
created by us. MNIST-Man has two convolutional layer (32 and 64 filters each) and one dense layer
with 128 neurons. SVHN-Man was created as a small network reference having reasonable accuracy
compared to Maxout-NiN. In the first row we indicate that in one experiment a structure for MNIST
was learned from the pixels and feature extracting convolutional layers were not used.

vanilla topology learned structure
size . .
dataset topology accuracy accuracy t-size replaced-size
replaced/total

MNIST None 99.07

MNIST-Man 104K/127K 99.35 99.45 0.38 024 (4.2X)
SVHN Maxout NiN 527K/1.6M 98.10 97.70 0.70 0.10 (10X)

SVHN-Man 88K/105K 97.10 96.24 0.43 029 (34X)
CIFAR 10 VGG-16-D 7.4M/15M 92.32 92.94 0.52 0.0179 (55X)

WRN-40-4 4.7TM/9M 95.09 95.42 0.66 037 (2.7X)
CIFAR 100 VGG-16-D 7.4M/15M 68.86 70.68 052 0.0176 (57X)

ImageNet AlexNet S59M/61M 57.20 57.20 0.08 0.0438 (23X)

Table 2: A summary of the highest classification accuracy achieved by replacing the deepest layers of
common topologies (vanilla) with a learned structure. For the vanilla network, “size” corresponds
to the number of trainable parameters in the deepest layers-to-be-replaced/entire-network. For the
learned structures, “t-size” is the total network size (vanilla - replaced layers size + learned structure)
normalized by the vanilla network size; “replaced-size” is the size of the learned structure normalized
by the size of the vanilla network section it replaced (size reduction ratio). The first row corresponds
to learning a structure directly from the MNIST images.

References

Abadi, Martin, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro, Craig,
Corrado, Greg S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat, Sanjay, Goodfellow,
Ian, Harp, Andrew, Irving, Geoffrey, Isard, Michael, Jia, Yangqing, Jozefowicz, Rafal, Kaiser,
Lukasz, Kudlur, Manjunath, Levenberg, Josh, Mané, Dan, Monga, Rajat, Moore, Sherry, Murray,
Derek, Olah, Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya, Talwar,
Kunal, Tucker, Paul, Vanhoucke, Vincent, Vasudevan, Vijay, Viégas, Fernanda, Vinyals, Oriol,
Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu, Yuan, and Zheng, Xiaoqiang. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow!
org/. Software available from tensorflow.org.

Adams, Ryan, Wallach, Hanna, and Ghahramani, Zoubin. Learning the structure of deep sparse graph-
ical models. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pp. 1-8, 2010.

Asbeh, Nuaman and Lerner, Boaz. Learning latent variable models by pairwise cluster comparison
part ii- algorithm and evaluation. Journal of Machine Learning Research, 17(224):1-45, 2016.

Baker, Bowen, Gupta, Otkrist, Naik, Nikhil, and Raskar, Ramesh. Designing neural network
architectures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Chang, Jia-Ren and Chen, Yong-Sheng. Batch-normalized maxout network in network. arXiv
preprint arXiv:1511.02583, 2015.

Chickering, David Maxwell. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507-554, 2002.

Chollet, Frangois. keras. https://github.com/fchollet/keras| 2015.

Collobert, R., Kavukcuoglu, K., and Farabet, C. Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, 2011.

Cooper, Gregory F and Herskovits, Edward. A bayesian method for the induction of probabilistic
networks from data. Machine learning, 9(4):309-347, 1992.

Dash, D. and Druzdzel, M. Robust independence testing for constraint-based learning of causal
structure. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence,
pp. 167-174, 2003.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248-255. IEEE, 2009.

Elidan, Gal, Lotner, Noam, Friedman, Nir, and Koller, Daphne. Discovering hidden variables: A
structure-based approach. In Advances in Neural Information Processing Systems, pp. 479—-485,
2001.

Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448-456,
2015.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations, 2015.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple layers of features from tiny images. 2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pp. 1097—
1105, 2012.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner, Patrick. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/fchollet/keras

Miikkulainen, Risto, Liang, Jason, Meyerson, Elliot, Rawal, Aditya, Fink, Dan, Francon, Olivier,
Raju, Bala, Navruzyan, Arshak, Duffy, Nigel, and Hodjat, Babak. Evolving deep neural networks.
arXiv preprint arXiv:1703.00548, 2017.

Murphy, K. The Bayes net toolbox for Matlab. Computing Science and Statistics, 33:331-350, 2001.

Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco, Alessandro, Wu, Bo, and Ng, Andrew Y. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, volume 2011, pp. 5, 2011.

Paige, Brooks and Wood, Frank. Inference networks for sequential Monte Carlo in graphical models.
In Proceedings of the 33rd International Conference on Machine Learning, volume 48 of JMLR,
2016.

Pearl, Judea. Causality: Models, Reasoning, and Inference. Cambridge university press, second
edition, 2009.

Real, Esteban, Moore, Sherry, Selle, Andrew, Saxena, Saurabh, Suematsu, Yutaka Leon, Le, Quoc,
and Kurakin, Alex. Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041,
2017.

Ripley, Brian D. Pattern recognition and neural networks. Cambridge university press, 2007.

Silva, Ricardo, Scheine, Richard, Glymour, Clark, and Spirtes, Peter. Learning the structure of linear
latent variable models. Journal of Machine Learning Research, 7(Feb):191-246, 2006.

Simonyan, Karen and Zisserman, Andrew. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Spirtes, P., Glymour, C., and Scheines, R. Causation, Prediction and Search. MIT Press, 2nd edition,
2000.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929-1958, 2014. URL http://jmlr.org/papers/vib/srivastavalda.html.

Stuhlmiiller, Andreas, Taylor, Jacob, and Goodman, Noah. Learning stochastic inverses. In Advances
in neural information processing systems, pp. 3048-3056, 2013.

Yehezkel, Raanan and Lerner, Boaz. Bayesian network structure learning by recursive autonomy
identification. Journal of Machine Learning Research, 10(Jul):1527-1570, 2009.

Zagoruyko, Sergey and Komodakis, Nikos. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Zoph, Barret and Le, Quoc V. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Zoph, Barret, Vasudevan, Vijay, Shlens, Jonathon, and Le, Quoc V. Learning transferable architectures
for scalable image recognition. arXiv preprint arXiv:1707.07012, 2017.

http://jmlr.org/papers/v15/srivastava14a.html

Appendix

A Recursive Latent Structure Learning

(6. X, Xopn) D

|

yes

set G to be a
gather layer for X

is max
indegree
>n+1

no

increase d-sep res-
olution of Gx ton

decompose into
X p and {X 4},

J

hY

N

K recursive calls call
{X 4 Xez,n+ 1} | return
a recursive call 1
{X D, X ex U Cta
Xa,n+ 1) return

add to G: the

returned results and

K latent parents

J

Figure 4: A flow chart of our algorithm.

B Extended Empirical Evaluation

We evaluate the quality of the learned structure in two experiments:

e (Classification accuracy as a function of network depth and size for a structure learned
directly from MNIST pixels.

e (Classification accuracy as a function of network size on a range of benchmarks and compared
to common topologies.

All the experiments were repeated five times where average and standard deviation of the classification
accuracy were recorded. In all of our experiments, we used a ReLLU function for activation, ADAM
(Kingma & Ba, |2015)) for optimization, and applied batch normalization (loffe & Szegedy, [2015)
followed by dropout (Srivastava et al., 2014) to all the dense layers. All optimization hyper-parameters
that were tuned for the vanilla topologies were also used, without additional tuning, for the learned
structures. For the learned structures, all layers were allocated an equal number of neurons. Threshold
for independence tests, and the number of neurons-per-layer were selected by using a validation set.
Only test-set accuracy is reported.

Our structure learning algorithm was implemented using the Bayesian network toolbox (Murphy,
2001)) and Matlab. We used Torch7 (Collobert et al., 2011)) and Keras (Chollet, 2015) with the
TensorFlow (Abadi et al., 2015) back-end for optimizing the parameters of both the vanilla and
learned structures.

B.1 Network Depth, Number of Parameters, and Accuracy

We analyze the accuracy of structures learned by our algorithm as a function of the number of
layers and parameters. Although network depth is automatically determined by the algorithm, it is
implicitly controlled by the threshold used to test conditional independence (partial-correlation test
in our experiments). For example, a high threshold may cause detection of many independencies
leading to early termination of the algorithm and a shallow network (a low threshold has the opposite
effect). Thus, four different networks having 2, 3, 4, and 5 layers, using four different thresholds, are
learned for MNIST. We also select three configurations of neurons-per-layer: a baseline (normalized
to 100%), and two configurations in which the number of neurons-per-layer is 50%, and 37.5% of the
baseline network (equal number of neurons are allocated for each layer).

Classification accuracies are summarized in Table[3] When the number of neurons-per-layers is large
enough (100%) a 3-layer network achieves the highest classification accuracy of 99.07% (standard
deviation is 0.01) where a 2-layer dense network has only a slight degradation in accuracy, 99.04%.
For comparison, networks with 2 and 3 fully connected layers (structure is not learned) with similar
number of parameters achieve 98.4% and 98.75%, respectively. This demonstrates the efficiency
of our algorithm when learning a structure having a small number of layers. In addition, for a
smaller neuron allocation (50%), deeper structures learned by our algorithm have higher accuracy
than shallower ones. However, a decrease in the neurons-per-layer allocation has a greater impact on
accuracy for deeper structures.

neurons per layer 2 layers 3 layers 4 layers 5 layers

100% 99.04 99.07 99.07 99.07
50% 98.96 98.98 99.02 99.02
37.5% 98.96 98.94 98.93 98.93

Table 3: Classification accuracy [%] of structures learned from MNIST images as a function of
network depth and number of neurons-per-layer (normalized). For comparison, when a structure is
not learned, networks with 2 and 3 dense layers, achieve 98.4% and 98.75% accuracy, respectively
(having the same size as learned structures at 100% neurons-per-layer).

10

B.2 Learning the Structure of the Deepest Layers in Common Topologies

We evaluate the quality of learned structures using five image classification benchmarks. We compare
the learned structures to common topologies (and simpler hand-crafted structures), which we call
“vanilla topologies”, with respect to network size and classification accuracy. The benchmarks and
vanilla topologies are described in Table[I] In preliminary experiments we found that, for SVHN and
ImageNet, a small subset of the training data is sufficient for learning the structure (larger training set
did not improve classification accuracy). As a result, for SVHN only the basic training data is used
(without the extra data), i.e., 13% of the available training data, and for ImageNet 5% of the training
data is used. Parameters were optimized using all of the training data.

Convolutional layers are powerful feature extractors for images exploiting domain knowledge, such
as spatial smoothness, translational invariance, and symmetry. We therefore evaluate our algorithm
by using the first convolutional layers of the vanilla topologies as “feature extractors” (mostly below
50% of the vanilla network size) and learning a deep structure from their output. That is, the deepest
layers of the vanilla network (mostly over 50% of the network size; 64% on average) is removed and
replaced by a structure learned by our algorithm in an unsupervised manner. Finally, a softmax layer
is added and the entire network parameters are optimized.

First, we demonstrate the effect of replacing a different amount of the deepest layers and the ability
of the learned structure to replace feature extraction layers. Table] describes classification accuracy
achieved by replacing a different amount of the deepest layers in VGG-16-D. For example, column
“conv.10” represents learning a structure using the activations of conv.10 layer. Accuracy and the
normalized number of network parameters are reported for the overall network, e.g., up to conv.10 +
the learned structure. Column “vanilla” is the accuracy achieved by the VGG-16-D network, after
training under the exact same setting (a setting we found to maximize a validation-set accuracy for
the vanilla topologies).

learned vanilla

conv.5 conv.7 conv.10 classifier -

accuracy 90.6 92.61 92.94 92.79 92.32
parameters 0.10 0.15 0.52 0.98 1.00

CIFAR 10

accuracy 63.17 68.91 70.68 69.14 68.86
parameters 0.10 0.13 0.52 0.98 1.00
Table 4: Classification accuracy (%) and overall network size (normalized number of parameters).
VGG-16-D is the “vanilla” topology. For both, CIFAR 10/100 benchmarks, the learned structure

achieves the highest accuracy by replacing all the layers that are deeper than layer conv.10. Moreover,
accuracy is maintained when replacing the layers deeper than layer conv.7.

CIFAR 100

One interesting phenomenon to note is that the highest accuracy is achieved at conv. 10 rather than at
the “classifier” (the last dense layer). This might imply that although convolutional layers are useful
at extracting features directly from images, they might be redundant for deeper layers. By using our
structure learning algorithm to learn the deeper layers, accuracy of the overall structure increases
with the benefit of having a compact network. An accuracy, similar to that of “vanilla” VGG-16-D, is
achieved with a structure having 85% less total parameters (conv. 7) than the vanilla network, where
the learned structure is over 50X smaller than the replaced part.

Next, we evaluate the accuracy of the learned structure as a function of the number of parameters
and compare it to a densely connected network (fully connected layers) having the same depth and
size. For SVHN, we used the Batch Normalized Maxout Network in Network topology (Chang
& Chen, 2015) and removed the deepest layers starting from the output of the second NiN block
(MMLP-2-2). For CIFAR-10, we used the VGG-16-D and removed the deepest layers starting from
the output of conv.10 layer. For MNIST, a structure was learned directly from pixels. Results are
depicted in Figure 5] It is evident that accuracy of the learned structures is significantly higher (error
bars represent 2 standard deviations) than a set of fully connected layers, especially in cases where
the network is limited to a small number of parameters.

11

Finally, in Table 2] we provide the highest classification accuracies, achieved without limiting the
size of the learned structure (selected using a validation set). In the first row, a structure is learned
directly from images; therefore, it does not have a “vanilla” topology as reference (a network with 3
fully-connected layers having similar size achieves 98.75% accuracy). In all the cases, the size of the
learned structure is significantly smaller than the vanilla topology, and generally has an increase in

accuracy.

99 |
98.5

\O
o]

o5l
97

MNIST accuracy

o
o
)

~=-fully connected
—o—]earned structure| |

Ne)
[N
e

0.5 1 1.5 2
[a] number of parameters 1’

ol ~=-fully connected | |
-e-]earned structure

1.09 1.1 1.11 .12 1.13
number of parameters «10°

[b]

Nl
(=

oo
W

CIFAR-10 accuracy
o0
o

l
751 i
70 - fully connected | |
-e—]earned structure
7.66 7.67 7.68 7.69

number of parameters %10°

[c]
Figure 5: Accuracy as a function of network size. [a] MNIST, [b] SVHN. [c] CIFAR-10. Error bars
represent 2 standard deviations.

12

	Introduction
	Recursive Deep Structure Learning
	Preservation of Conditional Dependence
	Experiments
	Conclusions
	Recursive Latent Structure Learning
	Extended Empirical Evaluation
	Network Depth, Number of Parameters, and Accuracy
	Learning the Structure of the Deepest Layers in Common Topologies

