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Abstract

We propose MAGnet: a flexible class of generative models that can generate
rich multi-agent spatiotemporal trajectories over a long time horizon. Learning
generative models in this setting is challenging, as such data can exhibit both
complex individual and collective behavior over many time-steps. The key aspects
of MAGnet are: 1) its hierarchical latent structure that can jointly represent long-
term (macro) and short-term (micro) temporal dependencies; and 2) its shared
structure between agents. We experimentally validate that MAGnet can successfully
encode and generate realistic long-term basketball team trajectories for 5 players
jointly, while state-of-the-art variational models fail on this task.

Learning generative models for multi-agent spatiotemporal trajectories is a challenging problem,
as such data can exhibit complex individual behavior and long-term interactions between multiple
agents. For example, consider the movement dynamics of 5 basketball players in Figure 1. Players
move nonlinearly towards macro-goals (boxes) and display coherent team coordination over long
time horizons. This implies the the data distribution is multi-modal, and has nonlinear multi-agent
dynamics and long-term non-Markovian dependencies.

(a) Ground truth (b) MAGnet

Figure 1: 5 basketball player trajectories
over 8 seconds (50 frames) starting from
black dots. MAGnet learns complex multi-
agent distributions and consistently gener-
ates more realistic behavior over baselines.

Previous approaches have learned sequential genera-
tive models for handwriting, speech and image synthe-
sis [Chung et al., 2015, Gregor et al., 2015], but such
models fail to generalize to the multi-agent setting
(Figure 2a). To address this issue, we propose MAG-
net: a flexible model class that can generate complex
multi-agent behavior (Figure 1b) and be learned via
variational methods. MAGnet has two salient aspects:
1) it uses a hierarchical latent structure that can encode
non-Markovian dependencies between macro-goals
and agent state predictions; and 2) it uses a shared
agent structure, where each agent model conditions
its prediction on the goals of other agents. As such,
MAGnet can learn compact representations of long-
term multi-agent behavior.

In summary, our contributions are:

• We propose a model class of flexible distributions over multi-agent spatiotemporal data.

• We instantiate our model class with VRNNs and show how to train it via variational methods
and weak labels for long-term goals.

• We show that our model generates realistic multi-agent trajectories that are semantically
meaningful and capture the variability in the data.
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1 MAGnet: Multi-Agent Goal-driven Network

The goal of generative models is to learn the data distribution p(x) given data {x}, for instance,
by maximizing the log-likelihood of the data with respect to the model parameters. For a sequence
x = (x1, . . . ,xT ) of length T , the joint distribution can be factorized using conditional probabilities:

p(x≤T ) =

T∏
t=1

p(xt | x<t) (1)

Markovian approaches (e.g. RNNs) model the conditional probabilities using a hidden state ht:
p(xt | x<t) = gτ (ht−1) and ht = fθ(xt,ht−1), (2)

where τ and θ are model parameters, g returns the parameters of the conditional probability distribu-
tion (e.g. mean and covariance of a Gaussian) and f is a deterministic non-linear function.

Variational RNN. Chung et al. [2015] proposes Variational RNNs (VRNN) to better capture the
variability of highly structured sequential data. VRNNs combine RNNs with variational autoencoders
(VAE) by conditioning the VAE on ht−1. Let ϕprior

τ , ϕenc
τ , and ϕdec

τ denote the prior, encoding, and
decoding functions respectively.1 The model uses the probabilistic structure:

zt ∼ N (µ0,t, diag(σ2
0,t)), where [µ0,t,σ0,t] = ϕprior

τ (ht−1) (prior)

zt | xt ∼ N (µz,t, diag(σ2
z,t)), where [µz,t,σz,t] = ϕenc

τ (xt,ht−1) (inference)

xt | zt ∼ N (µx,t, diag(σ2
x,t)), where [µx,t,σx,t] = ϕdec

τ (zt,ht−1) (generation)

ht = fθ(xt, zt,ht−1) (recurrence)

(3)

Similar to VAEs, the model is trained to maximize a variational lower bound of the log-likelihood:

Eq(z≤T |x≤T )

[
T∑
t=1

−KL
(
q(zt | x≤t, z<t)‖p(zt | x<t, z<t)

)
+ log p(xt | z≤t,x<t)

]
(4)

MAGnet. In the multi-agent setting, we want to model N sequences of the same length T :
xi = (xi1, . . . ,x

i
T ), for agents i = 1 . . . N . MAGnet introduces macro-goal latent variables

mi = (mi
1, . . . ,m

i
T ) for each agent to model the conditional probabilities:

p(xit | xi<t) = gi(h
i
t−1,mt) and hit = fi(x

i
t,h

i
t−1), for agents i = 1 . . . N,

p(mt |m<t) = gm(hmt−1,xt−1) and hmt = fm(mt,h
m
t−1),

(5)

where mt is the concatenation of all mi
t and is shared among all agents. These conditional distribu-

tions can be instantiated using sequential prediction models, such as VRNNs. The aim of using mt is
to capture non-Markovian dependencies between macro-goals and agent states xt. In this work, we
use weak labels m̂ to learn this behavior from data, which we found to be the most stable approach.

The structure of our model is motivated by the following: 1) standard Markovian approaches with a
finite number of hidden states do not naturally capture long-term dependencies commonly exhibited in
sequential data [Zheng et al., 2016]; 2) temporal abstractions between long-term goals and short-term
state-action predictions have shown promising results in the planning and reinforcement learning
communities [Alexander et al., 2016, Lowe et al., 2017]; and 3) an agent’s conditional distribution
over next state predictions should also depend on the macro-goals of all other agents.2

2 Experimental Validation on Multi-Agent Trajectory Generation

Data. We trained MAGnet on tracking data of professional basketball players (107,146 training
and 13,845 test sequences). Each sequence has (x, y)-coordinates of 5 offensive basketball player
trajectories for 50 frames (8 seconds) and takes place in the left half-court. We extract weak macro-
goal labels m̂i

t for each player i as in Zheng et al. [2016]. The domain is segmented into a 10 × 9
grid of 5ft × 5ft cells, and m̂i

t is defined as the next cell in which player i is stationary (see ground
truths in Figures 1, 2a). We represent each m̂i

t as a one-hot vector of dimension 90. A key property
of macro-goals chosen in this way is that they change slowly over time relative to player positions.

1We omit feature extractors ϕxτ and ϕzτ from Eq. (3) for clarity.
2A similar idea was used in MADDPG [Lowe et al., 2017], a multi-agent deep reinforcement learning method

in which each agent maintains an approximation of the policies of all other agents.
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(a) Left: Ground truth trajectories from test set with
weak macro-goal labels (boxes). Players reach their
macro-goals along non-linear paths (green, purple).
Right: Baseline rollout of representative quality. Com-
mon problems include players moving in the wrong
direction (red) or out of bounds (purple, yellow, green).
Players do not move cohesively as a team.

(b) Left: Rollout from MAGnet with the same burn-in
as in (a). All players remain in bounds. The green
player corrects its trajectory, whereas in (a) it goes off
in the wrong direction. Right: Rollout from the left
shown with its generated macro-goals. The locations
of the macro-goals suggest that the players want to set
up a formation along the 3-point line.

(c) More rollouts from MAGnet. Left: Macro-goal
generation is stable and changes only a few times per
rollout. Players often reach their macro-goals at some
point in their trajectories. Right: Rare failure case:
the green player moves out of bounds despite macro-
goals generated in bounds. This is likely due to an
under-representation of starting states in the data.

(d) Blue trajectories are ground truth. Left: The green
player takes different paths towards the same macro-
goals in 15 rollouts, suggesting that MAGnet captures
the variability of the data. Right: Macro-goals are
manually fixed to guide the green player towards the
basket and then the bottom-left, demonstrating that
macro-goals can control state predictions in rollouts.

Figure 2: 50-frame rollouts starting from the black dots. A 10-frame burn-in period is applied for all
rollouts (unless otherwise stated as ground truth), marked by dark shading on the trajectories.

Details of Models. We combine MAGnet with VRRNs by modeling the conditional distributions
of the agents and macro-goals in Eq. (5) as separate VRNNs. The baseline is a VRNN whose decoder
splits into 5 separate decoders, one for each player, conditioned on the same latent variable zt. We use
memory-less 2-layer fully-connected networks for priors, encoders, and decoders, and 2-layer GRU
memory cells for hidden states. Both models have a latent space dimension of 80 (40 for macro-goals
and 8 per agent in MAGnet), and are also conditioned on the previous positions of the players. We
use a learning rate of 0.0005 and compare models that achieve the best log-likelihood on the test set.

Results. Both models achieve comparable quantitative performance (log-likelihood ∼ 2350 nats
per test sequence), but rollouts from MAGnet are of significantly higher quality3, shown and analyzed
in Figure 2.4 For instance, trajectories generated by MAGnet are much more realistic and cohesive as
a team, whereas frequent problems exhibited by the baseline involve players moving in the wrong
direction or out of bounds. Furthermore, we observe that: 1) macro-goals allow us to interpret each
player’s long-term goals and how they change over time (Figures 2b, 2c); 2) macro-goals influence a
player’s trajectory (Figure 2d); and 3) MAGnet captures the variability of the data (Figure 2d).

Future work. Our results suggest several directions for further investigation: 1) developing a
better theoretical understanding of the optimal hierarchical latent structure; 2) learning MAGnet
without weak macro-goal supervision; 3) validating MAGnet on other modalities and domains; and
4) exploring more probabilistic structures such that the model generalizes better with more agents
(e.g. with the ball and defensive players), deeper hierarchies, and over longer time horizons.

3Higher log-likelihoods do not necessarily indicate higher quality of generated samples [Theis et al., 2015].
4More rollouts can be viewed at https://ezhan94.github.io.
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