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1 Introduction

One of the biggest current challenges of visual object detection is reliable operation in open-set
conditions [1]. In contrast to closed-set conditions, where it is assumed that the objects seen during
deployment are the same as during training, a vision system operating in open-set conditions [2, 3]
will encounter objects of novel classes that were not part of the training dataset. Robust object
detection in such conditions is of paramount importance for robotics, as a robot that acts on the output
of an unreliable visual perception system can perform catastrophic actions.

One way to handle the open-set problem is to utilize the uncertainty of the model to reject predictions
with low probability. Bayesian Neural Networks (BNNs) [4, 5], with variational inference commonly
used as an approximation [6–10], is an established approach to estimate model uncertainty. In 2015,
Gal and Ghahramani [11] proposed Dropout Variational Inference, also known as Dropout sampling,
as a tractable approximation to BNNs. While Dropout sampling has recently been deployed to
regression, semantic segmentation, and image classification tasks [11–14], it has not yet been applied
to visual object detection.

Here we extend the concept of Dropout sampling to object detection for the first time. We evaluate
Bayesian object detection on a large synthetic and a real-world dataset and show how the estimated
label uncertainty can be utilized to increase object detection performance under open-set conditions.

2 Object Detection – A Bayesian Perspective

Object Detection with Dropout Sampling Object detection is concerned with estimating a bound-
ing box alongside a label distribution for multiple objects in an image. To extend the concept of
Bayesian deep learning from image recognition to object detection, we use SSD [15] with a VGG16
base network [16] that contains two dropout layers after the fully connected layers. Following the
Dropout sampling approach [11], we sample from the distribution of the weights of this network by
performing multiple forward passes of an image through the network with active Dropout layers.

Partitioning Detections into Observations A single forward pass through a sampled object de-
tection network with weights W̃ yields a set of individual detections, consisting of bounding box
coordinates b and a softmax score vector s. We denote these detections as Di = {si,bi}. Multiple
forward passes yield a larger set D = {D1, . . . , Dm} of m such individual detections Di. Detec-
tions from the set D with high mutual intersection-over-union scores (IoU) will be partitioned into
observations using a Union-Find data structure. We define an observation Oi as a set of detections
with high mutual bounding box IoU: Oi = ∪Di s.t. IoU(Dj , Dk) ≥ 0.95 ∀Dj , Dk ∈ Oi. The
threshold of 0.95 was determined empirically.

Extracting Label Probabilities and Uncertainty We can now approximate the vector of class
probabilities qi by averaging all score vectors sj in an observationOi. This gives us an approximation
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of the probability of the class label yi for a detected object in image I given the training data T,
which follows a Categorical distribution parametrized by qi: p(yi|I,T) ∼ Cat (k,qi). The entropy
H(qi) = −

∑
j qij · log qij is used to measure the label uncertainty of the detector for a particular

observation.

Using Dropout Sampling to Improve Object Detection Performance in Open-Set Conditions
In open-set conditions, we would expect the label uncertainty, or Entropy H(qi), to be higher for
detections falsely generated on open-set objects (i.e. object classes not contained in the training data).
A threshold on the Entropy H(qi) can be used to reject detections of such unknown objects. This
allows us to formulate the central Hypothesis of our paper: Dropout variational inference improves
object detection performance under open-set conditions compared to a non-Bayesian detection
network. The following two sections describe the experiments we conducted to verify or falsify this
hypothesis and present our findings.

3 Evaluation

We evaluate the object detection performance in open-set conditions with three metrics: (1) Recall
describes how well a detector identifies known objects, (2) open set error describes how robust an
object detector is with respect to unknown objects and (3) precision describes how well a detector
classifies known and unknown objects.

Precision and Recall Let Ω = {O1, . . .On} be the set of all object observations in a scene after
partitioning as described in Section 2. Label uncertainty is addressed by comparing the Entropy
H(qi) with a threshold θ and rejecting Oi if H(qi) > θ. For every remaining Oi, we find the
overlapping known ground truth objects with an IoU of at least 0.5. If the winning label matches any
of these objects, the observation is counted as true positive, otherwise as false positive. If there is
no overlapping object and the winning class label is not 0 (unknown), this is also counted as a false
positive. Every known ground truth object that was not associated with an observation (i.e. there is
no Oi with an IoU ≥ 0.5 with that object) gets counted as a false negative. Precision and recall are
then defined as usual.

Absolute Open-Set Error We define absolute open-set error as the total number of observations
passing the Entropy test (H(qi) < θ) that do not overlap a ground truth known object (IoU ≥ 0.5)
and do not have a winning class label of ’unknown’.

Datasets Used in the Evaluation Our evaluation is based on two datasets: The SceneNet RGB-D
validation set which contains photo-realistic images of 1000 differing indoor scenes [17], with 100
objects of unknown classes for a network trained on COCO. 30 images from each scene were tested
in the evaluation. The second dataset evaluated was the QUT Campus Dataset, with data collected
using a mobile robot across nine different and versatile environments on our campus [18]. Detections
from this dataset were evaluated by manual visual inspection.

Evaluation Protocol and Compared Object Detectors Our evaluation compares the performance
of Vanilla SSD (i.e. the default configuration of SSD [15]), Vanilla SSD with Entropy thresholding
and Bayesian SSD (i.e. SSD with Dropout sampling and Entropy thresholding). Bayesian SSD was
tested for 10, 20, 30 and 42 forward passes through the network. Performance metrics were calculated
for entropy thresholds θ between 0.1 and 2.5.

4 Results and Interpretation

Our experiments confirmed the hypothesis formulated in Section 2: The Bayesian SSD detector
utilizing Dropout sampling as an approximation to full Bayesian inference improved the object
detection performance in precision and recall while reducing the open-set error in open-set conditions.

As shown in Table 1, Bayesian SSD is able to achieve significantly greater precision and recall scores
than the vanilla SSD without Dropout sampling. When choosing the performance of the vanilla SSD
as a reference point, the Bayesian SSD is able to significantly reduce open-set error (OSE) while
retaining the F1 score. Alternatively the F1 can be significantly improved while keeping the OSE
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Figure 1: Network performances for SceneNet RGB-D (Left) and QUT Campus dataset (Right).

at the reference level. This suggests that Bayesian SSD produces a reliable uncertainty estimate
for object classification; as such, it is able to make more informed decisions to reject incorrect
classifications of known and unknown classes. A network utilizing Bayesian SSD is also able to
achieve a significantly higher maximum recall. As expected, collecting detections from multiple
forward passes allows Bayesian SSD to have a greater chance of detecting objects that may be
overlooked in a single forward pass.

Forward Passes As can be seen in Figure 1, 10 forward passes is able to maintain the vanilla SSD
reference F1 score and reduce open-set error comparably to greater numbers of passes. However, at
least 20 forward passes are needed to maximize F1 score for the vanilla SSD open-set error. Beyond
the reference OSE point, more forward passes achieve slightly higher F1 scores, but at the cost of
a significant increase in open set error. Depending on the performance requirements of a detection
system, fewer forward passes may be suitable, allowing for reduced computation cost.

Real World Dataset For the QUT Campus dataset, the Bayesian SSD is able to reduce the total
error per true detection. This can be seen in Figure 1, where at the reference point for the vanilla SSD
with no entropy thresholding, Bayesian SSD has significantly reduced the total error. This consists of
open-set error and incorrect classifications of known objects. Additionally, for the same total error,
Bayesian SSD achieves significantly greater number of true detections. While this may be due to
multiple detections per object, it can also be inferred that this partially represents the superior recall
performance of Bayesian SSD.

5 Conclusions and Future Work

We verified the central hypothesis of our paper that Dropout sampling allows to extract better label
uncertainty information and thereby helps to improve the performance of object detection in the
open-set conditions that are ubiquitous for mobile robots. A promising direction for future work is
to exploit the spatial uncertainty for an object-based SLAM system to gain a better estimate of the
6-DOF object pose.

Table 1: Performance Comparison on SceneNet RGB-D [17]

Forward max. abs OSE Recall Precision F1 Score at abs OSE at
Passes F1 Score at max F1 point ref. OSE ref. F1 Score

vanilla SSD 0.220 18331 0.165 0.328 0.220 18,331
SSD with Entropy test 0.227 12638 0.160 0.392
Bayesian SSD 10 0.270 20991 0.214 0.364 0.269 8,225

20 0.292 24922 0.244 0.364 0.284 8,313
30 0.301 28431 0.261 0.355 0.286 9,003
42 0.309 32034 0.278 0.347 0.285 9,256
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