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Abstract

Many real-world engineering problems rely on human preferences to guide their
design and optimization. We present PrefOpt, an open source package to simplify
sequential optimization tasks that incorporate human preference feedback. Our
approach extends an existing latent variable model for binary preferences to allow
for observations of equivalent preference from users.

1 Introduction

Defining metrics amenable to optimization can be quite challenging in complex engineering systems.
Systems often have components that rely on human perception to judge performance and it can be
difficult to develop quantitative measures to capture these perceptual metrics. We are motivated by
the problem of tuning the behavior of a motion planning system for a driverless car. In this setting,
it may be more practical to employ a tuning strategy that only requires a user to conduct pairwise
comparisons of planning system configurations as either more, less or equivalently comfortable.

Figure 1: Hypothetical preference-based optimization of a motion planning system. A user is asked
to compare a sequence of configurations of a planning system as either worse, better or equivalent.
The pairwise comparisons are used to refine the search for the optimal configuration.

By only requiring comparative judgements as feedback, the user is freed from developing a rigorous,
single scalar measurement of comfort. Human-in-the-loop preference-based optimization methods
[13414L 1047, 18 [15] have been developed to alleviate some of the requirements of previous model-based
optimization methods [2| [11} [14]. These interactive optimization methods allow users to more easily
optimize systems that are measured using perceptual metrics or multiple metrics. In this article, we
introduce an extension to an existing preference model, allowing for the user to report configurations
as equivalently preferable. We also introduce PrefOpt, an open source library that builds on Edward
[L6] to conduct sequential preference-based optimization using the extended preference model.
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2 Preference Model Supporting Ties

Models that relate discrete preference observations to latent function values drawn from Gaussian
process priors have been well studied [} 14, 9] 13]]. Previous preference models have required that
the user state a binary preference when presented with two options (x;,x; € Q@ C RP). In
many real-world applications, it may be that even experts occasionally have difficulty discerning two
alternatives in terms of absolute preference. To address this concern, we extend the discrete preference
observations with a third option: specifying equivalent preference between the two alternatives.
Specifically, we adopt a modified Bradley-Terry model that supports ties, or configurations with
equivalent preference [13].
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Figure 2: Graphical model (left) and generative process (right) of the preference model.

The model draws latent function vectors f € RY from a Gaussian process prior where each entry
corresponds to one of the IV unique query points (X) the user has compared so far. The « variables
are drawn from normal priors and then transformed to form the length-scales 8 of the covariance
function; they, in turn, are used to define K, the covariance matrix. Length scales are bounded

by a which, along with S(z) = ﬁ, is used to define the transformation from =y to 6. Here,

rbf(xi,x;,0) = o2 exp ( - %ZdDZI %(%‘d - a:jd)2>.

The generalized Bradley-Terry model relates the observed discrete preference data c,, to the latent
function values (f1 , f2) associated with the two points (x ,x2, ) compared by the user during an
interactive query. The tie parameter 3 > 1, is inversely related to the precision with which a user can
state a preference [13]]. A higher value for /3 leads to more mass being place in the equivalence bin
(77) of the categorical distribution over the three possible preference outcomes for two query points.

2.1 Variational Inference

In place of approximating the posterior with a multivariate Gaussian using the Laplace approximation
around a MAP estimate of the latent variables [} 9], we opt for an approximation that employs
variational inference. We set out to approximate p(z | X, c), the posterior of the latent random
variables, where z = {f,~} is the combined set of latent random variables in our model. We use a
mean field approximation strategy to construct our approximating distribution ¢ : a factored set of
Gaussians each parametrized by a mean and variance as shown below.

v)

p(z | X,c) = q(z; A) H/\/'zl\)\m, o H (26 | Mgy Aok)

i=1 k=1

We rely on the techniques built into Edward [16] to perform the optimization required to recover
the variational parameters A that minimize the reverse KL divergence between the true posterior
distribution p and the approximating distribution ¢. In total there will be 2N + 2D variational
parameters; two for each of the IV entries in f and two for each of the D elements of +.



3 Acquisition Function for Preference-Based Optimization

To determine the next point (x™) to be presented to the user as a comparison point, we adopt a strategy
that searches the domain for where the expected improvement of the latent function is highest relative
to the current, most preferred point (x”) [4]. With our approximation ¢(z ; A) of the posterior, it is
possible to explore the use of an integrated acquisition function, as proposed in [[14].

k., = [rbf(x*,x1,0) --- rbf(x*,xn,0)]

p(x*) =kIK™'f
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x" = argmax/aE|(x*;z)q(z i A)dz

Here ®(-) and ¢(-) denote the CDF and PDF of the standard normal distribution, respectively. The
value fpes; is the latent function value associated with the currently most preferred configuration
x?. If the user is always asked to compare x™ against the current most preferred point x°, the most
preferred point can be updated as a result of this comparison.

4 PrefOpt Software

The goal of the PrefOpt software package is to provide a simple interface for conducting human-in-
the-loop, preference-based optimization tasks. The user is required to initially define a bounding box
to represent the search domain of the parameters of interest. The optimization proceeds by iteratively
proposing two query points for the user to compare[3] The preference order of the two query points is
recorded and the underlying latent preference model is updated. Currently only two query points will
be returned each iteration for the user to compare, however, a strategy of returning larger batches of
comparison points could be pursued [3. 6].

1 import prefopt

# define the domain of the search space
bounding_box = [[-5.0, 5.0], [0.0, 10.0]]

4 exp = prefopt.PreferenceExperiment(bounding_box)

6 for i in xrange(l,N):

7 # search for the next points to compare

8 X = exp.find_next()

9 # get user preference : -1 denotes x1 < x2, O denotes x1 = x2, 1 denotes x1 > x2
10 order = get_user_pref (X[0], X[1])

11 # update model with new preference observation

12 exp.prefer (X[0], X[1], order)

Figure 3: Example usage of PrefOpt to conduct preference-based optimization.

The PrefOpt library will hopefully facilitate future investigations into preference-based optimization
and similar interactive optimization techniques. In particular, it is exciting to consider applications
in the self-driving space where metrics are often difficult to specify or intrinsically linked to human
perception. Other interesting avenues of future work could include investigating strategies to propose
multiple comparison query points at each iteration, evaluating new acquisition functions, or comparing
the effectiveness of non-GP based methods for capturing user preference data.

The open source PrefOpt package will be hosted at https://github.com/prefopt/prefopt.


https://github.com/prefopt/prefopt

5 Experimental Results

To measure the effectiveness of our preference-based optimization method, we considered its effi-
ciency in minimizing synthetic test functions using only pairwise comparative observations. At each
iteration a query point (x") is selected and compared against the current best point (x”) using a test
function (fies;). The discrete preference observations were simulated in the following way :

X] R Xg, if |flest(xl) - ftesl(x2)| <e
pref(Xqu) = { X > Xg, elseif ftest(xl) > ftest(x2)
X1 < Xo, otherwise

We initialized the search with 2D + 1 samples from a latin hypercube sequence, where D is the
number of input parameters of the test function. We repeated each experiment 10 times and reported

the median and interquartile range of the best seen objective value after each iteration. We included
two settings of the tolerance parameter ¢ = {0.001, 0.1} and evaluated the expected improvement
acquisition function, a “pure exploration” (apg) acquisition function [6} 4] and random search [1]].

ape(x*;2z) = rbf (x*, x*,0) — k[ K 'k,
x" = argmax/apE(x*;z)q(z; A)dz

We evaluated PrefOpt using several optimization test functions [12]. We observed the expected
improvement acquisition function outperforming the baselines across the selected test functions 4]
Our approach seems work well under both settings of the tolerance parameter which is encouraging
as it suggests our method might be useful even to users with less than expert ability to discern quality.
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Figure 4: Summary of PrefOpt optimization traces on a collection of synthetic test problems.
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