
How well does your sampler really work?

Ryan Turner*

MILA, Université de Montréal
turnerry@iro.umontreal.ca

Brady Neal*
MILA, Université de Montréal
bradyneal11@gmail.com

Markov chain Monte Carlo (MCMC) methods have seen a huge increase in use over the last few
decades. The goal in MCMC methods is to sample from a complex probability distribution p? given
access only to its unnormalized density p̃, where p̃ is typically a posterior distribution. These posteriors
are intractable to normalize and sample from in complex models such as deep networks; in deep
networks, posterior integration has the potential to alleviate problems like adversarial examples [4].

Each machine learning conference contains a publication proposing a new variation on MCMC
methods. The community lacks a method to determine if these new methods actually sample from
posteriors found in real problems with improved accuracy over existing samplers. New methods are
benchmarked either 1) via hand-crafted toy problems (where a ground-truth is known) or 2) via test
set performance on real problems. The issue with hand-crafted examples is obvious: Performance
on these problems may have little relation to performance on real problems. Benchmarking via test
set performance on real problems is laudable. However, it confounds the specification of the model
and priors with the performance of the sampler. In a misspecified model, it is possible that a sampler
stuck in an unrepresentative part of the posterior could actually have higher test set performance.

Whether current samplers are providing samples from anything close to the true posterior on difficult
problems is of critical importance for determining future research directions. Are samplers with
higher test set performance actually sampling from real posteriors more faithfully? Can we sample
with any fidelity from complex high dimensional distributions? Is that merely a “fool’s errand”? The
answers to these questions will determine if it is a worthwhile endeavor to continue to hone MCMC
methods for application in successful modern models such as deep neural nets.

We propose a new data-driven approach to create a benchmark that estimates how well various
MCMC procedures work on real problems. Arguably, algorithms in machine learning and statistics
rely on the “workhorses” of either optimization or sampling methods. The world of (non-convex)
optimization has already tackled this challenge with the COCO benchmark [6], which contains a
test battery of difficult optimization problems. Our approach is an analogous system for sampling
methods. However, we aim to further improve upon this using flexible (including neural net based)
benchmark examples that have been trained to match posteriors found in practice.

The notion of a black box is highly relevant to conceptually understanding this work. Fundamentally,
an MCMC sampler is a system that takes a black box that computes an unnormalized density p̃ ∝ p?
(and possibly ∇ log p̃) and a previous sample xt−1 ∈ RD in the Markov chain; it outputs another
sample xt ∈ RD. Once the Markov chain has converged, these samples are theoretically guaranteed
to marginally come from the density p?, albeit with temporal correlation. If the previous sample was
drawn exactly, xt−1 ∼ p?, then xt ∼ p? exactly as well; this is a result of detailed balance.

By analogy, optimization algorithms take an objective function f ∈ RD → R (and ∇f ) as a black
box and produce points xt ∈ RD that successively minimize f as much as possible. Just as COCO
provides its objectives f as a black box to the optimizers and keeps hidden the true optimum, our
benchmark provides the unnormalized density p̃ as a black box to the samplers. Our benchmark
keeps hidden the parameterization of p̃ needed to efficiently take iid samples from p?.

Contribution We build a novel benchmark to test various samplers on realistic problems. This
includes designing sensible metrics to score samplers across problems. Our system will serve as a
practical tool in research like MLcomp/COCO. We also explore the validity of MCMC diagnostics.

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.



Figure 1: Flowchart showing the five phases of methodology. Phases 0–2 are for creating benchmark examples
and are not re-run when new samplers are tested. Phase 2 includes mixture models, RNADE, and Real NVP [3].

Related work The closest existing system is SamplerCompare of Thompson [12], which tests
samplers on a handful of hand-crafted stress-tests such as Neal’s funnel. However, SamplerCompare
is more an R package to aid sampler evaluation than a full benchmark. Recent work from systems
biology [1] compares various samplers for dynamical systems (filtering) on a set of hand-crafted
ODE systems inspired by biological applications, and is not very relevant for machine learning.

1 Methodology

In our approach we use a large “data set of data sets” and a diverse “model zoo” to create a
representative set of examples. Long MCMC chains are drawn (using NUTS [7]) from each of these
posteriors. Flexible unsupervised models that serve as a ground-truth in the benchmarking phase
are fit to the chains to construct the benchmark example distribution (BED), which include deep
models like RNADE [13]. Once trained, these BEDs are functionally equivalent to hand-crafted
examples such as the toy posterior distributions usually used to benchmark samplers (or such as those
in COCO). However, these examples are not hand-crafted but, rather, are much more representative
of real problems. Because it is possible to draw exact (iid) samples from the BEDs, we now have a
ground-truth set of samples to validate the accuracy of the sampling methods, and assess MCMC
diagnostics. In particular, we look at the effective sample size (ESS) because it provides a concrete
statement on the quality of an MCMC chain [8]. Our approach is a form of meta-learning [14].

Our benchmark system follows a five phase approach, with a graphical summary in Figure 1.

In phase 0, we create a “corpus” of data sets that we refer to as a “data set of data sets.” This is meant
to create a realistic sample of problems that a practitioner may encounter “in the wild.” Such an
approach was also taken in the AutoML competition [5] and the automated statistician project [9].

In phase 1, we use a model zoo to simulate a variety of (Bayesian) models that a practitioner
might attempt to apply to a real problem. There are models for regression and classification. Each
model/data set pair results in a posterior over a parameter space, which varies in dimensionality
depending on the problem. Except in very simple cases (e.g., linear regression), we are not able to
obtain samples from these posteriors exactly. We use NUTS, the default sampler in PyMC3 [11] and
Stan [2], because it is considered to be a good off-the-shelf sampler. By running multiple long chains
of NUTS on the posteriors, we obtain a sufficient approximation and representation for phase 2.

In phase 2, we run various density estimation models (e.g., RNADE) to generate BEDs on the Markov
chains from phase 1. We run a separate training procedure on each model/data set pair. These BEDs
serve as surrogates for the real posteriors found in phase 1. We do not aim to replicate the posteriors
from phase 1 exactly, but generate examples that are qualitatively similar to the real posteriors in
phase 1. This gives us examples that are more realistic than the usual hand-crafted toy problems.
Nonetheless, we train multiple models and take the one with the highest held-out likelihood on the
last 20% of the Markov chain from phase 1. Model checking diagnostics can also be used to verify the
similarity of the BEDs (surrogates) and their corresponding Markov chains from the real posteriors.

When selecting models for use as BEDs in phase 2, we have the following requirements: 1) The
models are flexible enough to closely fit the posteriors found in phase 1. 2) They serve as a black box,
providing an unnormalized density p̃ (and ∇p̃) for an arbitrary point x. 3) We can efficiently sample
(ground-truth) from them given their parameters (which are hidden from the samplers).

2



Cauc
hy

HMC
Lapl

ace
Metr

o
NUTS

em
cee mix1 slic

e

sampler

10 4

10 3

10 2

10 1

100

101

NE
SS

 

Cauc
hy

HMC
Lapl

ace
Metr

o
NUTS

em
cee mix1 slic

e

sampler

10 4

10 3

10 2

10 1

100

101

EF
F 

0.2 0.4 0.6 0.8 1.0

ESS / N

10 3

10 2

10 1

100

EF
F 

HMC NUTS emcee mix1 slice

Figure 2: Performance summaries: The box plots demonstrate the distribution on NESS (left) and efficiency
(center) conditional on the sampler achieving an RESS of at least 12 to only show the mode where the samplers
don’t completely fail. We also show a calibration plot to assess if ESS is a good predictor of efficiency with the
diagonal in dashed black. The ESS diagnostic appears to have an optimistic bias.

In phase 3, we benchmark the samplers. If someone invents and provides a new sampling algorithm,
it is added in phase 3. Phases 0–2 remain fixed as new samplers are submitted to be benchmarked.
Each sampler is run on each of the BEDs for multiple chains for a fixed period of time; meaning, N
is different for each chain. The raw samples from these Markov chains form the output of phase 3.

In phase 4, we take a large number (e.g., ∼105) of exact iid samples from the BEDs as a ground-truth.
The square loss between unbiased point estimates θ̂ (e.g., µ̂d or σ̂2

d) taken from the Markov chains
from phase 3 and the point estimates from the exact chains are aggregated. We also compute and
store the MCMC diagnostics for each chain.

We then aggregate the performance results by looking at the real effective sample size (RESS) as
derived from the square errors in point estimation θ̂. In analogy to the justifications for the ESS
diagnostic we define: RESS := R/mean sq. error = RK/

∑K
k=1(θ̂k − θ)2, where K is the number

of MCMC chains and R = N Varp? [θ̂] is a constant to make RESS comparable across different
estimators θ̂. When looking at the distribution of sampler performance across examples it is more
appropriate to use normalized ESS: NESS := RESS/medianN , where the median is taken across
different samplers on the same example. We also define efficiency (EFF) as RESS/N .

2 Results

The box plots in Figure 2 provide a sense of the variation. The NESS of the samplers is generally
bimodal: either the samplers achieve >1% efficiency or they completely fail with an RESS < 1. To
illustrate a single mode, in Figure 2 we show the box plots after excluding the “failed” chains. Inspired
by the rule of N = 12 from MacKay [10], we use an RESS of 12 to threshold failure-vs-success.
Emcee is the most bimodal: while it sometimes has a high NESS competitive with advanced methods,
it has the lowest success probability (49% vs. 78% for NUTS). Emcee also has the lowest efficiency
of any method except random walk Metropolis, but has the highest per sample speed.

Other results shown include: NUTS and HMC are the highest performers, despite their higher per
sample cost. Slice sampling also makes a “strong showing”, being more competitive in the lower
dimensional cases. Random walk metropolis methods generally have an efficiency in the 0.1% to
1% range while slice sampling and HMC based methods have efficiencies in the ball park of 2% to
40%, with NUTS showing the highest performance. Emcee seems to vary widely. Using a compound
proposal “mix” (alternating NUTS and random walk Metropolis) does not substantially increase
NESS when methods succeed. However, mix increases the chance of success: to 83% from 78% for
NUTS when θ̂ = µ̂, to 91% from 87% for KS distance, but only to 72% from 71% when θ̂ = σ̂2.

3 Conclusions

We have presented a novel data-driven system to benchmark the real performance of MCMC samplers
on realistic problems. This benchmark is intended to become a general service that will become as
widespread as COCO or MLcomp, and evolve with time by including more models in phases 1 and 2.

3



References
[1] B. Ballnus, S. Hug, K. Hatz, L. Görlitz, J. Hasenauer, and F. J. Theis. Comprehensive bench-

marking of Markov chain Monte Carlo methods for dynamical systems. BMC Systems Biology,
11(1):63, 2017.

[2] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker,
J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming language. Journal of Statistical
Software, 20:1–37, 2016.

[3] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP.
arXiv:1605.08803, 2016.

[4] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner. Detecting adversarial samples from
artifacts. arXiv:1703.00410, 2017.

[5] I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macia, B. Ray,
M. Saeed, A. Statnikov, et al. Design of the 2015 ChaLearn AutoML challenge. In Neural
Networks (IJCNN), 2015 International Joint Conference on, pages 1–8. IEEE, 2015.

[6] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff. COCO: A platform for
comparing continuous optimizers in a black-box setting. arXiv:1603.08785, 2016.

[7] M. D. Hoffman and A. Gelman. The No-U-Turn Sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

[8] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal. Markov chain Monte Carlo in practice: A
roundtable discussion. The American Statistician, 52(2):93–100, 1998.

[9] J. R. Lloyd, D. K. Duvenaud, R. B. Grosse, J. B. Tenenbaum, and Z. Ghahramani. Auto-
matic construction and natural-language description of nonparametric regression models. In
Association for the Advancement of Artificial Intelligence, pages 1242–1250, 2014.

[10] D. J. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University
Press, 2003.

[11] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in Python using
PyMC3. PeerJ Computer Science, 2:e55, 2016.

[12] M. B. Thompson. Introduction to SamplerCompare. Journal of Statistical Software, 43(12):
1–10, 2011.

[13] B. Uria, I. Murray, and H. Larochelle. RNADE: The real-valued neural autoregressive density-
estimator. In Advances in Neural Information Processing Systems, pages 2175–2183, 2013.

[14] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial Intelligence
Review, 18(2):77–95, 2002.

4


	Methodology
	Results
	Conclusions

