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Abstract

We design a deep generative model for tensor decomposition, in which the high-
order interactions are captured by a Variational Auto-Encoder. By taking advan-
tages of the nonlinear modeling provided by Neural Networks and the uncertainty
modeling provided by Bayesian models, we replace the multi-linear product in
traditional Bayesian tensor decomposition with a more flexible nonlinear function
(i.e., a neural network) whose parameters can be learned from data. Our model
can be efficiently optimized with stochastic gradient descent. Accordingly, it is
scalable to large real-world tensor.

1 Introduction

Tensor decomposition is an effective way to analyze high-order data. Conventional tensor decompo-
sition methods include the Tucker decomposition [1], the CANDE-COMP/PARAFAC (CP) [2, 3]
and their variants. The CP method can be taken as a special case of the Tucker decomposition, by
constraining its core tensor to be diagonal. Recently, modeling the uncertainty of interactions in
tensor decomposition with probabilistic models is more and more attractive [4, 5, 6, 7, 8, 9]. The
InfTucker [6] extended the Tucker model to an infinite feature space; generalized the CP model in a
Bayesian way to model the intricate and uncertain interactions.[8, 10, 9]. Despite the aforementioned
advantages, in practice, traditional Bayesian latent variable methods are hard to inference, whatever
sampling based approaches (such as Markov Chain Monte Carlo, MCMC) or variational inference
approaches are used. MCMC usually have expensive computational costs, especially when the size
of a tensor is large. Variational inference often demands tractable expectation of the approximate
posterior.

In this work, we put forward a novel probabilistic CP decomposition method, which exploits the
Deep Generative Model (DGM) [11, 12, 13] to catch the high-order interactions of tensor and name
the corresponding model as DeepCP. In particular, we use Variational Auto-Encoder (VAE [11, 12] to
learn latent feature posteriors from observed tensor entries by its recognition network (encoder) and
generate tensor data reversely by the generative network (decoder). In detail, the recognition network
learns latent representations from the observed tensor entries. The generative network takes the latent
presentations feed by the recognition network as the input, and output the parameters of distributions
that controlling the missing tensor entries. With properly chosen link functions, the missing entries
of any data types can be recovered. The proposed DeepCP model enjoys the advantages of both deep
Neural Networks and Bayesian methods. The employment of deep Neural Networks can better model
the complex nonlinear interactions among tensor entries, and the Bayesian framework can better
model the uncertainty of parameters. Although introducing Neural Networks into Bayesian latent
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variable models makes the posterior distribution very complicated, we resort to the reparametrization
trick [11], such that the expectation of reconstructing the likelihood (conditional distribution) over
posterior distribution of latent variables can be well approximated. Furthermore, since there are no
global representations of latent variables shared by all data points, our DeepCP model can be inferred
efficiently with stochastic optimization rather than the time-consuming sampling methods.

2 Model

2.1 Bayesian Tensor Decomposition

We begin to present our model by introducing notations. Overall, we denote tensors by swash letters
and matrices by capital letters. The superscript of a capital letter denotes the ID of the matrix. The
subscript denotes operation of indexing. For convenience purposes, vectors in this paper are written
as bold lowercase letters or capital letters with an index according to the context. For example, for a
matrix A, Ai: refers to its ith row and A:j is the jth column of matrix A.

Let a D-way (or D-mode) tensor denoted by Y and Y ∈ RN1×N2×···×ND with the number Nd is the
dimension of Y along the d-th way. The actual tensor Y can be obtained by adding noise to a low-rank
tensor X : Y = X + ε, where ε is an i.i.d Gaussian noise term, namely ε ∼

∏
i1,...,iD

N (0, ε−1).
Following [2, 3, 14, 15], the CP model decomposes a tensor X into a sum of rank-1 component
tensors as follows,

X =

R∑
r=1

U1
:r ◦ U2

:r ◦ · · · ◦ UD:r = [U1, U2, ..., UD], (1)

where Ud ∈ RNd×R are the latent factor matrices of the tensor X , d ∈ [D]1, and R is the CP
rank of the tensor X . We will use both column representation and row representation Ud =
(Ud:1, ..., U

d
:r, ..., U

d
:R) = (Ud1:, ..., U

d
id:, ..., U

d
Nd:)

> in this paper.

We can easily reformulate the D-way CP decomposition defined in Equation (1) into an element-wise
form,

X (i1, i2, ..., iD) =

R∑
r=1

U1
i1,rU

2
i2,r · · · U

D
iD,r,

where X (i1, i2, ..., iD) is the entry of tensor X with index (i1, i2, ..., iD), and Udid,r(d = 1, ..., D)
denotes the (id, r)-th element of the d-th factor matrix. With this element-wise form factorization of
X , the observed tensor Y can be further factorized as the latent factors with the noise term ε within
the Gaussian noise model,

p(Y|X ) = N (Y|X , ε)

=
∏

i1,...,iD

N (Y(i1, i2, ..., iD)|
R∑
r=1

D∏
d=1

Udid,r, ε
−1)

=
∏

i1,...,iD

N (y|x, ε−1),

For the convenience of statement, we name y := Y(i1, ..., iD) and x := X (i1, ..., iD) as the tensor
entry of index (i1, ..., iD). In this paper, we suppose that x follows an univariate Gaussian distribution
with mean and variance denoted by µ and σ2 respectively. As well as x, µ and σ2 are the short forms
of µ(i1, ..., iD), σ2(i1, ..., iD). We omit the index µ(i1, ..., iD) for the convenience of presentation.
In next section, we will study the connection between µ, σ2 and the latent factor matrices {Ud}Dd=1.
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Figure 1: The graphical illustration of the DeepCP.

2.2 DeepCP Decomposition

In Bayesian view, we suppose that the entries of tensor X are generated by some random process
involving the latent factors U (Equation. (1)). By further sampling U from a prior distribution p(U),
the tensor X is generated from the likelihood p(X|U) conditioned on U as follows,

p(X|{Ud}Dd=1) =
∏

i1,...,iD

[N (x|µ, σ2)]I . (2)

Contrary to the traditional Bayesian way of modeling p(X|U) [5, 6, 9, 7, 4, 8], we propose that
µ and σ2 are functions of the latent CP factors U . In detail, µ := µ(u), σ2 := σ2(u), where
u = (U1

i1:; ..;U
D
iD:) ∈ RDR×1 is a long vector by concatenating the latent factors Udid: one by one,

Udid: is the id-th row of factor matrix Ud, and I := I(i1, ..., iD) is an indicator function (equals to 1
if the (i1, ..., iD)-th element is observed, 0 otherwise ).

In particular, we consider the two functions µ(·) and σ2(·) are represented by two Neural Networks
with the same input U1

i1:, .., U
D
iD: as follows,

µ = w>µ h+ bµ, (3)

log σ2 = w>σ h+ bσ,

where h := h(u) is a nonlinear hidden layer shared by these two Neural Networks. In this work, the
hidden layer is a tanh activation function,

h(u) = tanh(W>u + b), (4)

where W ∈ RD×K is a flattened matrix of a tensor (each element Wdk ∈ RR). The parameters
{W,wµ,wσ} and {b, bµ, bσ} are the weights and biases of the Neural Networks. In the view of
Bayesian, the parameter of the posterior distribution of U is Θ = {W, b,wµ,wσ, bµ, bσ}.

Figure 1 shows the graphical model of our method. Udid denotes the id-th row of the d-th factor
matrix, µid and Λid are the mean vector and covariance matrix of Udid:. The number Nd in the plate
indicating that there are Nd rows of the d-th factor matrix, µ and σ are the mean and variance of
tensor entry x, y is the observed tensor entry, ε is a noise term.

Following the methodology of Bayesian model, the goal amounts to calculate the posterior density
conditioning on X ,

p(U |X ) = p(X|U,Θ)p(U)/p(X )

Unfortunately, the calculation of the evidence p(X ) requires exponential time cost, making the poste-
rior density difficult-to-compute. Variational inference is an efficient method that can approximate
probability densities with optimization, which is much faster than the classical methods [16]. The
traditional variational inference (the mean-field method) works based on the assumption that the
expectations of the approximate posterior are tractable. In most of cases, however, it is impossible
to get the analytical solutions. What’s more, the mean-field assumption also hurts the flexibility of
model.

1In this paper, [N ] denotes the set {1, 2, 3, ..., N}, where N is a positive integer.
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To perform efficient inference with more flexible posterior, we prefer to use the framework of Auto-
Encoding Variational Bayes (AEVB) [11] to model our complex high-order tensor data. Using AEVB,
in particular, we can approximate this posterior density with a family of distributions q(U |X ,Φ)
involving the parameter Φ. This is a set of densities over the latent variables U , and has a Gaussian
form as follows,

q(Udid:|µdid ,Λ
d
id

) = N (Udid:|µdid , (Λ
d
id

)−1), (5)

where λdid and (Λd
id

)−1 are the mean vector and covariance matrix associated with vector Udid:

respectively, and (Λd
id

)−1 = diag(λdid), µdid ,λ
d
id
∈ RR×1. For the given form of the approximated

posterior distribution, we mark its parameters as Φ = {µdid ,λ
d
id
}Dd=1.

Furthermore, the likelihood is presented with Neural Networks (as shown in Equation. (2), (3), and
(4)), which enhance the flexibility of modeling the complex interactions of high-order tensor.

Then, we try to find the optimal member of family of densities q(U |X ,Φ). In searching the optimal
approximated conditional density q(U |X ,Φ∗), we keep q(U |X ,Φ) close to the exact posterior
p(U |X ) with Kullback-Leibler divergence,

q(U |X ,Φ∗) = argmin
Φ

KL(q(U |X ,Φ)||p(U |X ))

= argmin
Φ

(log p(X )− L(Φ|X )), (6)

where L(Φ|X ) = Eq[log p(X , U)] − Eq[log q(U |X ,Φ)]. Because Kullback-Leibler divergence is
always greater than or equals to zero. So we can get the lower bound L(Φ|X ) of log p(X ) from
Equation. (6),

log p(X ) ≥L(Θ,Φ|X )

=Eq[log p(X|U,Θ)]−KL(q(U |X ,Φ)||p(U)).
(7)

It suggests that minimizing the Kullback-Leibler divergence is equivalent to maximize the lower
bound L(Φ|X ). And from Equation. (7), we find that the lower bound involves both Φ and Θ.

Because there are no global representations of latent variables that are shared by all data points, we
calculate the lower bound over a single data point x (with index (i1, ..., iD)) as follows,

L(Θ,Φ|x) = Eq[log p(x|u,Θ)]−KL(q(u|x,Φ)||p(u)). (8)
In most scenario (with non-conjugate setting), the expectation term Eq[log p(x|u,Θ)] of Equation. (8)
is intractable. Accordingly, we cannot derive the gradient of lower bound w.r.t its parameters directly.
Kingma et al. tackled this issue by parameterizing the latent variable u ∼ q(u|x,Φ) in the expectation
term with a differentiable transformation gΦ(ε), (ε is an additional noise variable) [11] as follows,

Udid: = µdid + diag((λdid)−1/2))εid .

in which εid ∼ N (0, I) is the noise term associated with vector Udid:.

From the perspective of auto-encoder, we refer to the term p(x|u,Φ) in Equation. (8) as a probabilistic
decoder (generative network), latent variables u are the code. The approximated posterior distribution
q(u|x,Φ) trying to learn the code u from observed data x refers to the encoder (recognition network).
The first term Eq[log p(x|u,Φ)] of Equation. (8) is the reconstruction loss or expected negative
log-likelihood of the data point x. The expectation is taken with respect to the encoder’s distribution
p(x|u,Θ) over the approximated posterior density of the latent variable u. This expected negative log-
likelihood term encourages the decoder to reconstruct the data. Supposing that the decoder’s output
does not reconstruct the data well, it will incur a large loss. We regularize the reconstruction loss with
the second term. It is the Kullback-Leibler divergence between the decoder model’s density q(u|x,Φ)
and p(u). This divergence measures how close q is to our prior p(u). If the representations of code
u in decoder q(u|x,Φ) are different from those that sampled from the prior, then Kullback-Leibler
divergence term will impose a penalty on the final cost.

To model our problem within the architecture of Bayesian inference, we have to assign an appropriate
prior for latent variables u or Udid:. In this paper, we assume that Udid: have shared Gaussian form
priors with the parameters Ψ = {µ̃, Λ̃},

p(Udid:|µ̃, Λ̃) = N (Udid:|µ̃, Λ̃−1),
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where µ̃ and Λ̃−1 are the mean vector and diagonal covariance matrix of all the latent variables Udid:

respectively, and (Λ̃)−1 = diag(λ̃), and λ̃ ∈ RR×1.

The loss function (lower bound) of the decomposed form on every single data point is,

L(Θ,Φ,Ψ|X ) =

L∑
l=1

N1∑
i1=1

· · ·
ND∑
iD=1

Ii1,...,iD
L

logN (x|µ(l), σ2(l)
)

−
D∑
d=1

Nd∑
id=1

KL[q(Udid:|µdid ,λ
d
id

)||p(Udid:|µ̃did , Λ̃
d
id

)],

(9)

where x refers to the observed tensor entry X (i1, ..., iD). The lower bound involves three sets of
parameters Θ, Φ and Ψ. As we discussed before, the Kullback-Leibler term of Equation. (9) is a
regularization term over reconstruction loss (the first term). This term tries to keep the representations
latent factors of each tensor entry as similar as the prior distribution.

3 Experiments

We have six baselines: the ALS CP [2, 15], ALS Tucker [17, 15], NCP [18], HOSVD[19] , FBCP [9],
InfTucker[6]. We do testing on three real-world tensors: the Amino Acid (5× 51× 201) [6, 5], Sugar
Process (265× 571× 7) [20], Flow Injection Analysis (12× 100× 89) [6, 5].

Missing Value Prediction We randomly sample 80% of tensor entries for training, and the rest for
prediction. We begin our experiment by fitting the baselines with various ranks from 2 to 20 [15]. We
select the rank of DeepCP with the approach stated in the last section. We present the results with
boxplot as shown in Figures 2. Generally, Bayesian-based methods (FBCP, DeepCP, and infTucker)
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Figure 2: Prediction performance of VAECP and other algorithms on the three real-world datasets.

perform better than the multi-linear methods.

4 Conclusion

We propose to abstract this the relationship between tensor and its latent factors with Deep Generative
Model. The inputs of the Neural Networks are the latent factors and the output are the parameters of
distributions for predicting the missing values.
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