
Bayesian Semi-supervised Learning with Deep
Generative Models

Jonathan Gordon
Department of Engineering

Cambridge University
jg801@cam.ac.uk

José Miguel Hernández-Lobato
Department of Engineering

Cambridge University
jmh233@cam.ac.uk

Abstract

Neural network based generative models with discriminative components are a
powerful approach for semi-supervised learning. However, these techniques a)
cannot account for model uncertainty in the estimation of the model’s discriminative
component and b) lack flexibility to capture complex stochastic patterns in the
label generation process. To avoid these problems, we first propose to use a
discriminative component with stochastic inputs for increased noise flexibility. We
show how an efficient Gibbs sampling procedure can marginalize the stochastic
inputs when inferring missing labels in this model. Following this, we extend the
discriminative component to be fully Bayesian and produce estimates of uncertainty
in its parameter values. This opens the door for semi-supervised Bayesian active
learning.

1 Introduction

Deep generative models (DGMs) can model complex high dimensional data via the use of latent
variables. Recently, advances in variational training procedures such as stochastic backpropagation
[17] and the reparametrization trick [9] have made training these models feasible and efficient. DGMs
are particularly powerful when neural networks are used to parameterize generative distributions and
inference networks, leading to the Variational Autoencoder (VAE, Figure 1a) [17, 9].

The ability to efficiently train such models has led to a plethora of interesting extensions, increasing the
flexibility of posterior approximations, expressiveness, and capabilities of the models [2, 19, 12, 16].
An important extension to standard VAEs is for semi-supervised learning [10, 12], which incorporates
labels into the generative model of the inputs (Figure 1b), extending the VAE to semi-supervised
learning tasks. In this setting, the labels are treated as latent variables that influence the generative
process for the inputs and a recognition network is then used as a discriminative component to infer
missing labels.

One major drawback of these previous approaches for semi-supervised learning with VAEs is that
after training, the generative model is discarded and the recognition network is the only element
used as a discriminative component [10, 12]. This is unsatisfactory from a modeling perspective as
the recognition network is just a tool for performing approximate inference, and cannot be used to
quantify model uncertainty.

Closely related to deep generative models are Bayesian neural networks (BNNs) [14]. BNNs extend
standard neural networks and explicitly model the uncertainty in the learned weights increasing
robustness and opening the door to tasks requiring uncertainty such as active learning [5, 6] and
Bayesian optimization [18]. Blundell et al. [1] extend ideas from stochastic variational inference
[9, 15] to an efficient inference procedure for BNNs. Further, Depeweg et al. [3] show how learning
can be extended to general α-divergence minimization [7, 13] and provide empirical evidence of the
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Figure 1: Graphical model depiction for VAE and BNN based models and proposed approach.

benefit of introducing stochastic inputs (Figure 1c). However, in these works the stochastic inputs are
of low (typically one) dimension.

We extend these ideas and develop a deep generative model with a discriminative component given
by a BNN with stochastic inputs to accommodate semi-supervised learning. Our motivation is that
after training, this BNN can be used to infer missing labels, rather than using the inference networks.
This allows us to fully quantify any modeling uncertainty in the predictions of our discriminative
component. We introduce two recognition networks and demonstrate how they can be used for
training and prediction, as well as for posterior inference of high-dimensional stochastic inputs at
prediction time. Our goal is to use the proposed method for semi-supervised Bayesian active learning.

2 Related Work

DGMs have recently shown to be very effective in semi-supervised learning tasks [10, 12], achieving
state-of-the-art performance on a number of benchmarks. Our model is most similar to the work
detailed by Kingma et al. [10]. However, since our discriminative component is a Bayesian neural
network with random inputs, we use a slightly different inference network architecture.

Similarly, Bayesian deep learning has recently been shown to be highly effective in active learning
regimes [6, 5]. In contrast to these works, the proposed model can perform semi-supervised and
active learning simultaneously, which may lead to significant improvements. Another difference is
that while Gal et al. [5] use dropout as a proxy for Bayesian inference [4] and Hernández-Lobato and
Adams [6] use a technique called probabilistic backpropagation, we propose leveraging variational
inference to explicitly model the weight uncertainty [1].

The proposed model builds on ideas from both DGMs and Bayesian deep networks to suggest a
principled method for simultaneous semi-supervised and active learning.

3 Deep Generative Model of Labels

We propose extending the model developed by Depeweg et al. [3] (as in Fig. 1d) and including an
inference network for z, allowing scalability of the latent dimension. Further, we propose inference
procedures to allow this model to be used for semi-supervised learning, similarly to Kingma et al.
[10], Maaløe et al. [11].

There are a few motivations for our approach: (i) it builds on the idea of VAEs, but does so in a manner
that results in an explicit probabilistic model for the labels, (ii) it extends BNNs with stochastic
inputs to include inference networks for the stochastic inputs, allowing generalizing these to high
dimensional variables, and (iii) it naturally accommodates semi-supervised and active learning with
the generative model. The generative model can be described as:
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p(z) = N (z;0, I) , (1)
pθ(x|z) = N (x;µx, νx) , (2)

pθ(y|z, x) = Cat (y;πy) , (3)

where we parameterize the distributions of x, y with deep neural networks:

µx = NNx(z, θ) , log νx = NNx(z, θ) , (4)
πy = NNy(z, x, θ) , (5)

where NNx and NNy have weightsWx andWy respectively, and θ = {Wx,Wy}.

3.1 Variational Training of the Model

We propose a variational approach for training the model with both labeled and unlabeled data. In
this section we are interested in point estimates of θ and Bayesian inference for z. We first derive the
variational lower bound. In the semi-supervised setting, there are two lower bounds (ELBOs), for the
labeled and unlabeled case.

3.1.1 Labeled Data ELBO

Following recent advances in variational inference [9, 17], we introduce inference networks qφ(z|x, y)
to approximate the intractable posterior distribution. Taking expectations w.r.t. q of the log likelihoods
we have:

log pθ(x, y) ≥ Eqφ(z|x,y) [log pθ(x|z) + log pθ(y|x, z)]− DKL (qφ(z|x, y)||p(z)) = Ll(x, y; θ, φ) , (6)

where qφ(z|x, y) is a recognition network parameterized by φ. The lower-bound contains a term for
the likelihood associated with the pair of variables x and y, and a regularization term for the inference
network. We can approximate expectations w.r.t. qφ(z|x, y) via Monte Carlo estimation:

Ll(x, y; θ, φ) ≈ 1

L

L∑
l=1

[
log pθ(x, y|zl)− log qφ(z

l|x) + log p(zl)
]
, (7)

with zl ∼ qφ(z|x, y), and for Gaussian recognition networks the KL term can be evaluated analyti-
cally.

3.1.2 Unlabeled Data ELBO

We can follow a similar approach to derive the lower bound for the unlabeled case. In this setting, we
have:

log pθ(x) ≥ Eqφ(y|x)
[
Ll(x, y; θ, φ)

]
+H [qφ(y|x)]Lu(x; θ, φ) , (8)

where we have used the decomposition qφ(z, y|x) = qφ(y|x)qφ(z|x, y), and H [·] computes the
entropy of a probability distribution. Thus, we have the two recognition networks qφ(z|x, y) and
qφ(y|x). This form of the lower bound has data fit terms for both x and y in the generative model, as
well as regularization terms for both recognition networks qφ(z|x, y) and qφ(y|x).
The recognition network qφ(z|x, y) is shared by both the unlabeled and labeled objectives. The
recognition network qφ(y|x) is unique to the unlabeled data. Following the work in [10, 12], we add
a weighted term to the final objective function to ensure that qφ(y|x) is trained on all data such that

L(θ, φ) =
∑

(x,y)∼p̃l

Ll(x, y; θ, φ) +
∑
x∼p̃u

Lu(x; θ, φ) + αE(x,y)∼p̃l [log qφ(y|x)] , (9)

where α is a small positive constant which is initialized in a similar way as in [10], p̃l is the empirical
distribution of labeled points and p̃u is the empirical distribution of unlabeled points.
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Figure 2: Preliminary experiments carried with the model. (a) Complete set of labeled data. (b)
Contour plots learned by a standard DNN using only six labeled labeled data. (c) Contour plots
learned by M2 [10] using only the depicted points with labels (the rest unsupervised). (d) Samples
from the generative model after training. (e) Contour plots learned by the model using only the
depicted points with labels (the rest unsupervised). (f) Contour plots learned with Bayesian training
of the model.

3.2 Discrete Outputs

Optimizing Eq. (9) is straightforward when y is continuous as we can approximate expectations by
sampling from qφ(z|x, y) and qφ(y|x) and using stochastic backpropagation and the reparameteriza-
tion trick [9, 17] to yield differentiable estimators.

Despite recent efforts [8], reparameterization for discrete variables is as yet not a well-understood
process. In the case where y is a discrete variable, that is, y ∈ {1, ...,K}, optimization of Lu requires
approximating expectations w.r.t. qφ(y|x). Rather than using Monte-Carlo approximations for this,
we propose to directly compute the expectation by summing over the possible values of y:

Eqφ(y|x) [f(y, z, x)] =
∑
y∈Y

qφ(y|x)f(x, y, z) . (10)

Substituting this for the relevant terms in Eq. (8) yields:

Eqφ(y|x) [log pθ(x, y|z)] =
∑
y∈Y

qφ(y|x)Eqφ(z|x,y) [log pθ(x, y|z)] (11)

and

Eqφ(y|x) [DKL(qφ(z|x, y)||p(z))] =
∑
y∈Y

qφ(y|x)DKL (qφ(z|x, y)||p(z)) . (12)

Taking explicit expectations w.r.t. qφ(y|x) rather than Monte-Carlo approximations allows us to
extend the training procedure to cases where y is discrete.

3.3 Introducing Model Uncertainty

A major advantage of this approach is that it enables us to express model uncertainty in the discrimi-
native component NNy(z, x, θ) by computing a posterior distribution on the weights Wy. For this,
we consider the following prior and likelihood functions:

4



pθ(Wy) = N (Wy; 0, I) , (13)
pθ(y|x, z,Wy) = Cat(y;πy) , (14)

where πy = NNy(z, x,Wy) is parameterized by a neural network with weights Wy. Assuming a
single labeled data point, the posterior distribution for the latent variables is:

pθ(Wy, z|x, y) =
pθ(x, y|z,Wy)p(z)p(Wy)

p(x, y)
. (15)

This posterior distribution is intractable. Following the work by Blundell et al. [1], Depeweg et al.
[3], we introduce an approximate posterior distribution for Wy given by qφ(Wy) = N (Wy;µw, σ

2
w)

with σ2
w being a diagonal covariance matrix. Note that we are assuming here that Wy is a posteriori

independent of z. We also assume a posteriori independence between Wy and y in the unlabeled
case. Re-deriving the lower bound for the case of one single labeled data point yields:

L(x, y; θ, φ) = Eqφ(z,|x,y)qφ(Wy) [log pθ(x, y|z,Wy)]−
DKL (qφ(z|x, y)‖p(z))−
DKL (qφ(Wy)‖p(Wy)) . (16)

The corresponding derviation for the unlabeled lower bound can be obtained from Eq. (8) in a similar
manner. We follow the work presented by Blundell et al. [1], and optimize the objective functions
applying reparameterization to the weights Wy as well as z.

3.4 Prediction with the Model

To approximate p(y?|x?) for a new example x?, we have to integrate pθ(y?|x?, z,Wy) with respect
to the posterior distribution on z and Wy . For this, Wy is sampled from qφ(Wy), while z is sampled
from the recognition network qφ(z|x?, y?). Since this recognition network requires y?, we use a
Gibbs sampling procedure, drawing the first sample of y? from the recognition network qφ(y?|x?).
In particular,

y
(0)
? ∼ qφ(y?|x?) ,

W
(τ)
y ∼ qφ(Wy) ,

z(τ) ∼ qφ(z|x?, y(τ−1)? ) ,

y
(τ)
? ∼ pθ(y?|x?, z(τ),W (τ)

y ) ,

 for τ = 1, . . . , T .

with the final prediction being an average over the samples. Using qφ(y?|x?) to initialize the procedure
increases efficiency and negates the need for a burn in period. In our experiments T = 10 produced
good results.

4 Preliminary Results

In this section we detail preliminary results achieved by the proposed model. We experiment with toy
data similar to that used by Maaløe et al. [12]. The data consists of 1e4 training and test samples,
generated from a deterministic function with additive Gaussian noise (Figure 2a). A small set is
selected as the labeled data, and the rest are unlabeled. We compare performance to that of a feed
forward neural network.

All neural networks have two hidden layers with 128 neurons, and z ∈ R5. We set α = 0.1 ∗ Nl,
where Nl is the number of labeled data points, and use RELU activations for all hidden layers.

The model converges on 100% accuracy in all cases for Nl > 10. When examining training curves
for different values of Nl (not shown due to space constraints), we see that as the labeled set is larger,
training converges faster and to better lower bounds.

Figures 2b, 2e, 2f show, respectively, the predictive probabilities learned by a deep neural network
(DNN) which ignores the unlabeled data, the proposed approach for Semi-Supervised Learning using
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Table 1: Test accuracy and log-likelihood for each method.

DNN SSLPE SSLAPD
LOG-LIKELIHOOD -1.20 -0.07 -0.01
ACCURACY 83.6 99.2 99.7

a Point Estimate for Wy (SSLPE) and the proposed approach for Semi-Supervised Learning using an
Approximate Posterior Distribution for Wy (SSLAPD). We use Nl = 6 in all cases: three labeled
examples selected from each class, in a similar manner to Maaløe et al. [12]. Table 1 shows the
average test log-likelihood and predictive accuracy obtained by each method. DNN overfits the
labeled data and achieves low predictive accuracy and test log-likelihood. SSLPE is able to leverage
the unlabeled data to learn a smoother decision boundary that aligns with the data distribution,
achieving much better predictive performance than DNN. Finally, SSLAPD makes predictions similar
to those of SSLPE but with higher uncertainty in regions far away from the training data. Overall,
SSLAPD is the best performing method. Finally, Figure 2d shows samples generated by SSLAPD,
indicating this method has learned a good generative process and is able to synthesize compelling
examples.

5 Discussion and Future Work

DGMs have been successfully applied to semi-supervised learning tasks, though by discarding the
model and using only an inference network for predicting labels. This approach does not allow to
account for model uncertainty.

In contrast, the proposed approach uses a Bayesian neural network for label prediction. In addition to
being more satisfying from a modeling perspective, this opens the door to joint semi-supervised and
active learning by accounting for model uncertainty.

Our experiments show that the proposed approach is promissing and able to produce wider confidence
bands far away from the training data than alternative methods that ignore parameter uncertainty.
Further experiments with alternative datasets such as MNIST are required. Future work includes
developing methods for acquiring new samples from a pool set, performing joint semisupervised and
active learning, and comparing with recent benchmark methods.
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