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Abstract

This short paper develops variational continual learning (VCL), a simple but
general framework for continual learning that fuses online variational inference
(V) and recent advances in Monte Carlo VI for neural networks. The framework
can successfully train both deep discriminative models and deep generative models
in complex continual learning settings where existing tasks evolve over time and
entirely new tasks emerge. Experimental results show that variational continual
learning outperforms state-of-the-art continual learning methods on a variety of
tasks, avoiding catastrophic forgetting in a fully automatic way.'

1 Introduction

Continual learning is a very general form of online learning in which data continuously arrive in
a possibly non i.i.d. way, tasks may change over time, and entirely new tasks can emerge [1, 2, 3].
What is more, continual learning systems must adapt to perform well on the entire set of tasks in an
online way that avoids revisiting all previous data at each stage. This is a key problem in machine
learning since real world tasks continually evolve over time and the size of datasets often prohibits
frequent batch updating. Moreover, practitioners are often interested in solving a set of related tasks
that benefit from being handled jointly in order to leverage multi-task transfer.

The ubiquity of deep learning means that it is important to develop deep continual learning methods.
However, it is challenging to strike a balance between adapting to recent data and retaining knowledge
from old data. Too much plasticity leads to catastrophic forgetting [4, 5, 6] and too much stability
leads to an inability to adapt. Recently there has been a resurgence of interest in this area. One
approach trains individual models on each task and then carries out a second stage of training to
combine them [7]. A more elegant and more flexible approach maintains a single model and uses a
single type of regularized training that prevents drastic changes in the parameters which have a large
influence on prediction, but allows other parameters to change more freely [8, 9, 10]. Our approach
here follows this venerable work, but is arguably more principled, extensible and automatic.

This paper is built on the observation that there already exists an extremely general framework for
continual learning: Bayesian inference. Critically, Bayesian inference retains a distribution over
model parameters that indicates the plausibility of any setting given the observed data. When new
data arrive, we combine what previous data have told us about the model parameters (the previous
posterior) with what the current data are telling us (the likelihood). Multiplying and renormalizing
yields the new posterior, from which point we can recurse. Critically, the previous posterior constrains
parameters that strongly influence prediction, preventing them from changing drastically, but it allows
other parameters to change. The wrinkle is that exact Bayesian inference is typically intractable and
so approximations are required. Fortunately, there is an extensive literature on approximate inference
for neural networks. We merge online variational inference (VI) [11, 12, 13] with Monte Carlo VI
for neural networks [14] to yield variational continual learning (VCL). In addition, we extend VCL
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to include a small episodic memory by combining VI with the coreset data summarization method
[15, 16]. We demonstrate that the framework is general, applicable to both deep discriminative
models and deep generative models, and that it yields excellent performance.

2 Continual Learning by Approximate Bayesian Inference

Consider a discriminative model that returns a probability distribution over an output y given an input
@ and parameters 0, that is p(y|0, ). In continual learning, the goal is to learn the model parameters
from a set of sequentially arriving datasets {mﬁ"), yt(n) };V;l. Following a Bayesian approach, a prior
p(0) is placed over 6. The posterior after seeing 7" datasets is recovered by applying Bayes’ rule:

p(O1D1r) o p(8) T, TIN ) p(5" 16, 2") = p(8) [11~, p(D:]6) o p(8|Dr.r—1)p(Dr|6).

Here we have used the shorthand D; = {yt") } 7]:];1 and the input dependence has been suppressed to
lighten notation. Importantly, a recursion has been identified whereby the posterior after seeing the
T-th dataset is produced by taking the posterior after seeing the (7" — 1)-th dataset, multiplying by the
likelihood and renormalizing. In other words, online updating emerges naturally from Bayes’ rule.

In most cases the posterior is intractable and approximation is required, even when forming the first
posterior p(0|D1) = ¢1(0) = proj(p(0)p(D1|0)). Here ¢q(0) = proj(p*(0)) denotes a projection
operation that takes an intractable un-normalized distribution p* () and returns a tractable normalized
approximation ¢(€). Subsequent approximations can be produced recursively by combining the
approximate posterior distribution with the likelihood and projecting: p(6|D1.7) =~ ¢r(0) =
proj(gr—1(0)p(Dr|0)). In this way, online updating is supported.

The field of approximate inference provides several choices for the projection operation including
Laplace approximation, variational KL minimization, moment matching, and importance sampling,
which respectively lead to Laplace propagation [17], online VI [11, 12, 13], assumed density filtering
[18] and sequential Monte Carlo [19] in the continual learning setting. Our paper uses the online VI
approach as it typically outperforms the other methods for complex models in the static setting [20]
and yet it has not been applied to continual learning of neural networks.

Variational Continual Learning (VCL) and Episodic Memory Enhancement. VCL employs a
projection operator defined through a KL divergence minimization over the set of allowed approximate
posteriors Q,

q:(0) = argmingeco KL(q(G) I Z%qt,l(G) p(Dt|0)), fort =1,2,...,T. (1)

The zeroth approximate distribution is defined to be the prior, ¢o(8) = p(0). Z, is the intractable
normalizing constant of p*(0) = ¢;—1(0) p(D;|0) and is not required to compute the optimum.

VCL will perform exact Bayesian inference if the true posterior is a member of the approximating
family O at every step. Typically this will not be the case and we might worry that performing repeated
approximations may accumulate errors causing the algorithm to forget old tasks. Furthermore, the
minimization at each step is also approximate (e.g. due to employing an additional Monte Carlo
approximation) and so additional information may be lost. In order to mitigate this potential problem,
we extend VCL to include a small representative set of data from previously observed tasks that we
call the coreset. The coreset is analogous to an episodic memory [21] that retains key information
from previous tasks which the algorithm can revisit in order to refresh its memory of them.

Algorithm 1 describes coreset VCL. The algorithm maintains a pair (C}, ¢;) comprising the coreset
and the variational distribution for non-coreset data at each time step ¢. The distribution ¢; is
continuously updated using eq. (2). When performing prediction, ¢; and C; are combined to form the
final variational distribution g; using eq. (3). This step ensures recent exposure to data from each task
and helps mitigate any residual forgetting. Treating the non-coreset and coreset data points separately
in the algorithm also ensures the data are not over-represented in the posterior approximation.

VCL in Deep Discriminative Models. VCL requires specification of ¢(6) where 6 in the current
case is a D dimensional vector formed by stacking the network’s biases and weights. For simplicity
we use a Gaussian mean-field approximate posterior ¢;(0) = HdD:1 N (64,45 put,4, 02 ;). Training the
network using the VFE approach in eq. (1) is equivalent to maximizing the variational lower bound:

Lher(@:(8)) = XN Eoeg, 0 [ log p(5™16,x™)] — KL(g:(6)||g:—1(8)) )



Algorithm 1 Coreset VCL

Input: Prior p(@), coreset size K from each task.
Output: Variational and predictive distributions at each step {q;(0), p(y*|z*, D1.¢) } ;.

Initialize the coreset and variational approximation: Cy < 0, gg < po.
fort=1...T do

Observe the next dataset D;.

C; < update the coreset using C;_1 and D;.

Update the variational distribution for non-coreset data points:

G1(0) < argminge o KL(q(0) || %qt,l(e) p(DyUCy—1 \ Ci]0)). ()
Compute the final variational distribution (only used for prediction, and not propagation):
q:(0) + argmingeo KL(q(0) || 73:(0)p(C1[0)). 3)

Perform prediction at test input z*: p(y*|z*, D1.t) = [ ¢:(0)p(y*|6, z*)d6.
end for
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Figure 1: Average test set accuracy on all observed tasks for Permuted MNIST.

w.r.t. the variational parameters { i 4, O’t’d}dDzl. Whilst the KL term can be computed in closed-form,
the expected log-likelihood requires further approximation. Here we take the usual approach of
employing simple Monte Carlo and the reparameterization trick to compute the gradients [22, 23].
At the first time step, the prior, and therefore go(0) is chosen to be a multivariate Gaussian [14, 24].

VCL in Deep Generative Models. We now extend VCL to encompass variational auto-encoders
(VAESs) [23, 25]. Consider a model p(x|z, 8)p(z), for observed data x and latent variables z. The
prior over latent variables p(z) is typically Gaussian, and the distributional parameters of p(x|z, 8)
are defined by a deep neural network. In the batch setting, the standard VAE approach learns the
parameters 6 by approximate maximum likelihood estimation, which is unsuitable for continual
learning as it does not return parameter uncertainty estimates that are critical for weighting the
information learned from old data. So, instead the VCL approach will approximate the posterior
distribution over parameters after observing the ¢-th dataset. The approximate posterior ¢, is obtained
by maximizing the variational lower bound:

x(n) z, z
Lo (@(8),8) = Bgyor{ S0t B, gy [log 20D KT (g,(6)]ar1(0)  (5)

1 (z|x{™))

w.r.t. ¢; and ¢, and the encoder network q¢(z|w§n)) is parameterized by ¢ which is task-specific.

3 Experiments

We now discuss two experiments for VCL. For additional experiments and discussions, see [26].

Deep Discriminative Models. We test VCL on the permuted MNIST benchmark for continual
learning [6, 9, 10]. The dataset received at each time step consists of labeled MNIST images whose
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Figure 2: Test-LL results for VAE on notMNIST (small) dataset. The higher the better.

pixels have undergone a fixed random permutation. We compare VCL to Elastic Weight Consolidation
(EWC) [9] and Synaptic Intelligence (SI) [10] approaches. The models consist of two fully connected
hidden layers, each of which contains 100 hidden units. We evaluate both VCL and VCL with a
coreset randomly selected from each task.

From results in fig. 1, VCL outperforms the EWC and SI by large margins, even though they benefited
from an extensive hyper-parameter search (see the appendix of the full paper [26] for the hyper-
parameter search of EWC and SI). After 10 tasks, VCL achieves 90% accuracy, while EWC and SI
only achieve 84% and 86% respectively. The results also show that using the coreset alone is not
useful for this task, but combining it with VCL leads to a modest improvement over VCL to 93%
accuracy.

Deep Generative Models. We consider generating 10 characters A to J of the notMNIST dataset
when 10 datasets containing images of each character are received in sequence. The generative
model consists of shared and task-specific components, each represented by a one hidden layer
neural network with 500 hidden units. The dimensionality of the latent variable and the intermediate
representation are 50 and 500, respectively. We use task-specific encoders that are neural networks
with symmetric architectures to the generator.

We compare VCL to EWC (with hyper-parameters A = 1, 10, 100). The methods are quantitatively
evaluated in fig. 2 by an importance sampling estimate of the test log-likelihood (test-LL). Initially,
VCL performs slightly worse on the most recent task when compared to EWC. This is likely due
to the fact that VCL optimizes a distribution over 8 while EWC computes point estimates, and the
latter strategy often produces higher test-LL. However, importantly VCL has a superior long-term
memory of previous tasks which leads to better overall performance. We note that EWC benefited
here from carefully tuning the hyper-parameter. This again reveals a key advantage of VCL.: its
objective function is hyper-parameter free.

4 Conclusion

Approximate Bayesian inference provides a natural framework for continual learning. VCL, devel-
oped in this paper, is an approach in this vein that extends online VI to handle general continual
learning tasks and complex neural network models. VCL can be enhanced by including a small
episodic memory that leverages coreset algorithms from statistics. We demonstrated how the frame-
work can be applied to both discriminative and generative models, giving state-of-the-art performance
compared to previous approaches, even though it has no free parameters in its objective function.
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