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Abstract

In learning deep generative models, the encoder for variational inference is typically
formed in an ad hoc manner with a structure and parametrization analogous to
the forward model. Our chief insight is that this results in coarse approximations
to the posterior, and that the d-separation properties of the BN structure of the
forward model should be used, in a principled way, to produce ones that are
faithful to the posterior, for which we introduce the novel Compact Minimal I-map
(CoMI) algorithm. Applying our method to common models reveals that standard
encoder design choices lack many important edges, and through experiments we
demonstrate that modelling these edges is important for optimal learning. We show
how using a faithful encoder is crucial when modelling with continuous relaxations
of categorical distributions.

1 Introduction

Deep generative modelling provides models and methods for density estimation and representation
learning. In a Bayesian framework, we can model the data, x, as being generated by an unobservable,
or latent, code z, with probabilistic decoder pφ(x | z) and prior p(z). When learning the model by
stochastic gradient variational Bayes (SGVB) or the proposal distribution for inference compilation
(IC), the modeller must assume a form for a probabilistic encoder qψ(z | x) approximating pφ(z | x).
In other tasks, such as semi-supervised representation learning, we may begin with a probabilistic
encoder, and must assume a form for the decoder and prior comprising the generative model.

Unfortunately, there exists no method for guiding the design of the structure of the desired encoder
or decoder in a principled, theoretically sound way. In the deep generative modelling literature, the
standard encoders are formed in an ad hoc manner by simply inverting the edges in the forward model
and removing edges into the observed variables [1, 2, 3]. In the inference compilation literature, the
true posterior has been represented more faithfully using a heuristic algorithm [4, 5]. For learning
disentangled representations, Siddharth et al. [6] specify a structured encoder and simply use a naive
Bayes model for the generative model, where the observed variables depend on all the others, the
later which are fully independent from each other. These typical encoder/decoder design choices fail
to encode many important conditional dependencies, and this results in suboptimal learning. Indeed,
even with infinite capacity factors, an encoder that encodes independencies not in the posterior cannot
learn the true posterior.

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.



We consider models here that can be expressed as Bayesian networks (BNs), a wide class of directed
Probabilistic Graphical Models (PGMs) [7] that includes latent state-space models [8, 2], sigmoid
belief networks (SBNs) [9], variational autoencoders (VAEs) [1], generative adversarial networks
(GANs) [10], and autoregressive networks [11, 12, 13]. PGMs is a framework for compactly repre-
senting and operating on distributions by encoding their conditional independencies, or equivalently,
their factorization, in graphs, and we use it to devise a novel algorithm, CoMI, for exploiting the
structure of the given model to form a compact factorization of the desired encoder or decoder that
is optimal in a certain technical sense. We term such designed encoders and decoders as minimally
faithful.

In brief, CoMI works by simulating variable elimination on the forward model in a topological
ordering with a min-fill heuristic, and applying the sepset property of clique trees to determine the
parents of each variable in the inverse. It has running complexity of order linear in the number of
variables times the tree-width of the chosen ordering. We demonstrate CoMI on Gaussian BNs with a
binary tree structure and observed leaves, for which we show how using a minimally faithful encoder
results in learning a vastly closer approximation to the true posterior, holding all else constant.

2 Related work

Krishnan et al. [8] present a specific instance of our insight, that in state-space models with a single
latent layer the Markov properties should be used to determine a factorization for the encoder. This
implies that the encoder should use both a latent summary of the past and all subsequent observed
variables as a summary of the future (or vice versa), rather than only conditioning on the previous
latent variable and current observation, as in ad hoc methods. They parametrize a minimally faithful
encoder using a bidirectional RNN and show that in non-linear continuous state space models superior
learning is obtained, relative to using unfaithful ones.

3 Experiments

We illustrate CoMI on binary tree structures of varying depth forming Gaussian BNs—a class of
models in which the cpd’s are normally distributed with a fixed variance, and mean that is a fixed
linear combination of its parents plus an offset. For a model of depth d,

X0 ∼ N(0, 1),

Xi | xb(i−1)/2c = y ∼ N(wiy, 1), i = 1, . . . , 2d − 2,

where the {wi} are fixed constants sampled from U [1/2, 2] and we treat the leaves
{x2d−1−1, . . . , x2d−2} as the observed variables.

We performed inference compilation on trees with depth d ∈ {4, 5, . . . , 8}. In the ad hoc/heuristic
encoder, each inverse cpd was parametrized with a normal components and a ReLU feedforward net-
work with [200, 200] hidden units. For the minimally faithful encoder we tried initially parametrizing
each factor with its own NN, but found that whilst that lead to the optimal solution being reached,
quicker and more stable learning was achievable by sharing weights across the factors. For this, we
developed a novel variant of the masked autoencoder density estimate (MADE) [11] that is able to
exactly model the dependency structure of a minimally faithful encoder, and compare it against a
standard MADE that uses a fully connected graph on the latent variables. We again use a ReLU
feedforward network with two hidden layers for these, adjusting the number of units to match the
capacity of the ad hoc/heuristic encoder.

New samples from the forward model were drawn every minibatch for training, with 25 minibatches
considered to constitute an epoch, and the test objective evaluated on a single minibatch every epoch.
The exact posterior under the true factorization can be calculated by using the equivalence between
Gaussian BNs and multivariate normal distributions [7, §7.2]—first the forward model is converted
to the parameters of a multivariate normal distribution using Theorem 7.3, which is then transformed
back into a Gaussian BN for the posterior using our true factorization and Theorem 7.4. Samples from
the posterior can be drawn by ancestral sampling. We evaluate inference amortization by calculating
the average log-posterior of a minibatch from the encoders every epoch under five fixed datasets of
the observed variables (which have not be seen by the optimizer). The learning rate was decimated
when learning converged, for example, every 100 epochs in the case of d = 5.
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Figure 1: (a) BN structure for a binary tree with d = 3; (b) Inverse formed by Stuhlmuller’s heuristic
algorithm [4], simply inverts the edges in the generative model.; (c) Minimal I-map for the inverse
produced by our algorithm, it includes an additional three edges that allow for the influence through
paths via parent nodes. Therefore, the heuristic factorization is missing a third of the edges necessary
to express the true inverse factorization.
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Figure 2: Comparing the reverse KL-divergence objective and log-posterior of samples from the
encoders in compiled inference across factorizations and tree depths.

The results for d = 5 are given in Figure 2 (other depths are similar). We observe that it is necessary
to model at least the edges in an I-map for the encoder to recover the posterior (as shown by both
MADEs), and by using a minimal I-map (just the “minimal MADE”) learning can be made faster
and more stable. Note that we have subtracted the constant term in the IC objective, which can be
calculated analytically for this model. We also observed during experimentation that if one were to
decrease the capacity of all methods, learning remains stable in the minimal MADE encoder at a
threshold where it becomes unstable in the other two methods.

4 Discussion

We have presented an algorithm that, given the BN structure for a generative model, produces a
factorization that is a compact minimal I-map for the posterior and have argued that this should
be used for the encoder. We have demonstrated that such an encoder results in learning a superior
approximation to the posterior in binary trees. Future work will demonstrate the utility of this method
on relaxed Bernoulli VAEs, whose ELBO is a very loose bound on the marginal log-likelihood,
state-space models with multiple latent layers, and applying the algorithm in reverse, to produce an
appropriately structured generative model given an encoder structure.
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