DNN s for Sparse Coding and Dictionary Learning

Subhadip Mukherjee, Debabrata Mahapatra, and Chandra Sekhar Seelamantula
Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India
Emails: {subhadipm, chandrasekhar}@iisc.ac.in, debabrata.mahapatra@videoken.com

Abstract

The contributions of this paper are two-fold: (i) building a deep neural network with
learnable nonlinearities for sparse coding; and (ii) developing a deep auto-encoder
architecture to perform dictionary learning. For sparse coding, the weights and
biases of the network are fixed as prescribed by the proximal-gradient methods
and we model the nonlinear activations parsimoniously using a linear expansion of
thresholds (LETs), which induces a rich variety of sparsity promoting regularizers.
For dictionary learning, the activations are taken as the hard-thresholding operator
and the network is trained to reconstruct the training examples. The linear mapping
effected by the final layer of the auto-encoder constitutes the dictionary.

1 Introduction

Given A € R™*"™ m < n, and y € R™, sparse coding [[1-4]] seeks to obtain a sparse * € R"
such that y =~ Ax*. The problem of sparse coding is often solved via regularized least-squares
optimization:
. 1
& = argmin_ ||y — Az]3 + 6 (),
x

where G (x) is an appropriate regularization function that encourages & to be sparse. Instead of

using a fixed sparsity-promoting prior such as G (x) = ||z||, or ||x||,, we propose a data-adaptive

learning of G () by building a deep neural network (DNN) with fixed affine parameters and learnable

activations. The architecture is inspired by unfolded proximal-gradient algorithm [5+7], which
1

employs updates of the form z‘™! = T;\f]) (z! —nVf (")), where f (x) = & ||y — Az||; measures

the data error and 7., (u) = arg min 3 |2 — u|® + vg(x) is the proximal operator [8], assuming that
G(x)=>",9(z;). By substitutixng Vf(x)= A" (Ax — y), one can rewrite the update rule as

2l =T (Wa' +b), where W =T —nAT Aand b=nA'y, (1)
which can alternatively be interpreted as the forward computation through a feed-forward neural

network with the weight matrix W and bias b shared across every layer [5]. Corresponding to

G (x) = ||x||,, known as the lasso regression in the statistics literature [9], the operator T turns
out to be the soft—thresholdin% (ST) operator [[10]. The update in (I} entails computations of the
form !t = ¢t (Wta:t +b), where ¢! is a nonlinear activation function acting on the affine

transformation &' = W'z! 4 b' of «*. Since the proximal operator is in direct correspondence with
the regularizer g (), learning its neural network analogue ¢! can be interpreted as learning the prior
on x*.

2 Learning activations using a linear expansion of thresholds (LETs)

Given a training dataset containing /V pairs {yq, m;} qg=1,---, N, and the corresponding dictio-
naries { A, }, where y, = Az} + £, one can, in principle, choose to learn W', b', and ¢t so that

Bayesian Deep Learning Workshop, NIPS 2017. The first and second authors have contributed equally.

Algorithm 1 Back-propagation algorithm for LETnetFixed.

1. Input: Training pair (y, z*) and the corresponding A.
2. Forward-pass: Run a forward pass through LETnetFixed to compute x¢ and X!, fort = 1 : L.
3. Initialization: ¢ < L, r* « % — x*, and g* « 0.
4. For t = L down to 1, do:
1. gt =g' + (@t)T 7!, where ®} ; = ¢y (}), and
2. rt=t = W 'diag (v (&")) .
5. Output: The gradient vector g° = V.J.

Algorithm 2 Back-propagation algorithm for LETnetVar.

1. Input: A training pair (y, *) and the corresponding dictionary A, such that y = Azxz* + &.
2. Forward-pass: Perform a forward pass through LETnetVar to compute «* and &°, ¢t = 1 : L.
3. Initialization: ¢ < L and V+J « ¥ — z*.

4. For t = L down to 1, do:

I Verd = (®) | Vg, where ®F, = oy (71),
2. VaiJ = diag (zz/ﬁ) (:ct)) Vi, and

3. Vyio1J =W Vg J, where W =T —nA' A.
5. Output: The gradient vectors V.t J, fort =1 : L.

the network estimates the sparse codes accurately — this requires optimizing (n2 + m) L parameters,
where L is the number of layers [5]]. This is a drawback, particularly, for large n, since one requires
a prohibitively large number of examples in order to avoid overfitting. As an alternative, Kamilov
and Mansour [7] fixed the weights and biases as prescribed by proximal gradient methods, and
learned +* by parametrizing it using a linear combination of shifted cubic B-splines. However, since
splines are compactly supported, such a parameterization is inefficient as it requires far too many
parameters (several thousands) as the dynamic range of the signal increases. In contrast, we model
1 parsimoniously as

_ (k=D)u?

K
$(u) = Y chn(u), where gy (u) = ue™ "5
k=1

and learn the coefficients during training. This parametrization using a linear expansion of thresholds
(LETs) is motivated by its success in several image denoising and deconvolution problems [11-13].
Further, it is economic — K = 7 suffices to model a rich variety of activations and corresponding
sparsity promoting regularizers over a large input dynamic range. We refer to the resulting sparse
coding network as LETnet, and consider two variants: (i) LETnetFixed, in which c}c = ¢, Vi, i.e., the
activation is the same across layers; and (ii) LETnetVar, wherein ¢}, vary across the layers.

2.1 Training LETnet using gradient-descent

For notational brevity, the gradient of the training cost with respect to ¢ is computed only for one
example (y,x*), where y = Az* + £, where € ~ N (0, ogI) Accumulating over all examples

leads to the overall gradient. Further, the noise vectors corresponding to different training pairs are
assumed to be independent. Denoting the prediction of an L-layer LETnet with parameters c as

x! (y, ¢), the training cost is given by J(c) = 3 ||« (y,¢) — *||3. For LETnetVar, the parameter

vector c is of size KL, with {c’f}tL:1 stacked together, whereas for LETnetFixed, c is a vector of
dimension K. To learn the optimal set of parameters, we employ gradient-descent, and update
the parameter vector in the i epoch as ¢; 11 = ¢; — aV.J(¢;), using an appropriate learning rate
«. For initialization, we choose the parameters in every layer of LETnet such that the resulting
activation function closely fits the ST operator. This ensures that, to begin with, the reconstruction
error obtained using an L-layer LETnet is approximately the same as that obtained by L iterations
of the iterative shrinkage thresholding algorithm (ISTA) [[10]. The back-propagation algorithms for

0.7

N ' [—LETnetFixed-Training 30
0.6 N - - LETnetFixed-Validation
XN —LETnetVar-Training 25
. - - LETnetVar-Validation EIVMSE-ISTA
0.5¢ . —fLETnet-Training IllLETnetFixed N
W ' - - fLETnet-Validation MLETnetvar | 20
204 — LETnetVarHFO-Training IlfLETnet ot
Ny - - LETnetVarHFO-Validation BLETnetVar-HFO Z 15
03k B %
_'::===:::::: 10
02 .- TiFmeme—mmo oo o
5
0.1 : : : :
5 10 15 20 25
TRAINING EPOCHS 0
(@) (b)
0.7 : : ;
—LETnetFixed-Training 30 -
0.6 - - LETnetFixed-Validation
' —LETnetVar-Training o5 |
051 - - LETnetVar-Validation
’ —fLETnet-Training
w - - fLETnet-Validation 207

Test SNR (dB)
o

107
5 =
0.1 : : : :
5 10 15 20 25
TRAINING EPOCHS 0
© ()

Figure 1: Training, validation, and test performances of the proposed architectures corresponding to fixed ((a)
and (b)) and varying ((c) and (d)) dictionaries, for an input signal-to-noise ratio (SNR) of 25 dB. The number of
iterations of ISTA and FISTA are chosen as 1000 and 200, respectively, leading to almost equivalent estimation
performance. Correspondingly, the number of layers L is fixed at L = 200 for LETnetFixed and LETnetVar,
whereas we set L = 50 for fLETnet.

computing V.J(c) corresponding to the LETnetFixed and LETnetVar architectures are summarized in
Algorithms [T] and 2} respectively.

To further improve the performance of LETnet we consider two mechanisms: (i) building a deep
residual network [14], referred to as fLETnet, by unfolding fast ISTA (FISTA) [15]]; and (ii) employing
Hessian-free optimization (HFO) having convergence behavior superior to gradient-descent. The
first mechanism facilitates effective learning via gradient-descent by introducing skip connections
with no additional parameters to learn. The second one improves the learning performance by
making updates that are tailored to the curvature of J(c) at ¢;. Moreover, it does not require explicit
computation of the Hessian of training objective. Instead, it employs a back-propagation algorithm to
compute the Hessian-vector product entailing same complexity as that of gradient calculation.

2.2 Experimental validation of LETnet and fLETnet

Two options are considered for simulation: (i) fixed dictionaries, where A, = A with entries
following A (0, 1) for ¢ = 1 to IV, and the same A is used in generating the training, validation,
and test examples (cf. Figures Eka) and Ekb)); and (ii) varying dictionaries, where the entries of
A, follow N (0, %), i.e., the training, validation, and test examples are generated using different
dictionaries drawn independently from the same distribution (cf. Figures Ekc) and Ekd)). In both
cases, the training and validation errors exhibit a similar decaying trend over epochs and the quantum
of improvement in the test SNR using LETnet and fLETnet over ISTA and FISTA is about 5 dB. This
experiment indicates that the activations and the sparsity priors learned by the proposed networks
have little dependence on the dictionary realizations, at least when they are drawn from the same

distribution. Rather, the learned activations capture the prior on x;.

Algorithm 3 Computing VJ (A) for deep DL.

1. Input: Training example y and the dictionary A at which the gradient is to be evaluated.
2. Initialization: Set W =T —nA" A, b=1nA"y,and V° = 04,15) -
4. Fort = 1 : L, calculate:

. ' =Wat '+ band zt = ¢ (:Et)

aEy dby n War t— n -1
2. pat = gab + Lo 5al a0 W, Vi and
rpy OFL

3. Vqt,ij =9 (xf;) 94,

3. Caleulate S22 = b0k + 30 Ay ViE

5. Output: Gradient % =>00 (U — ¥p) ;%’j, fori=1:mandj=1:n.

where 0,; is the Kronecker delta.

3 Deep auto-encoder architecture for dictionary learning (Deep DL)

In this setting, only a set of training examples {y,} € R™, ¢ = 1 : N, are available, whereas the
dictionary A™ and the corresponding sparse codes @, are unknown. We assume that each x, is
exactly s-sparse. The first L layers in the proposed network result in an estimate :ch of x4 from

Yy, and the final layer employs the transformation y, = Aw[? to reconstruct y,, at the output. The
weights and biases of the first L layers are tied, and are functions of A and the training data, as
defined in (I)). To leverage exact s-sparsity, the activations in the first L layers are chosen as the
hard-thresholding operator. During training, the weights and biases of the first L layers and the linear
map of the final layer are learned by minimizing J (A) = 1 Zévzl ||A:ch - qu; A recursive
procedure for computing VJ (A) is outlined in Algorithm[3] Note that Algorithm [3]entails only
one forward-pass through the network and no backward-pass is required. A comparison shown in
Figure 2| reveals competitive performance of deep DL with the benchmarking algorithms such as
KSVD [17,18] and the method of optimal directions (MOD) [19]]. The deep DL approach has several
advantages though: (i) the learning complexity grows linearly in IV, offering better scalability for
large datasets; (ii) amenability to distributed/online learning, since the gradient can be computed by
adding the gradients over all training examples; and (iii) ease of incorporating dictionary incoherence
by adding a suitable penalty such as || A" A — I|2 to the training objective .J(A) and by appropriately
modifying the gradient of the overall training objective.

4 Conclusions

We constructed custom deep neural networks for sparse coding, wherein the nonlinear activations
are modeled efficiently using LETSs and the coefficients are learned in a supervised fashion. This
approach is tantamount to learning the sparsity prior by adapting the LET coefficients to the training
data. Further, few LET parameters are required to model the activation in each layer. The resulting
activations are adjusted across the layers to balance between signal preservation and noise rejection.
For the unsupervised setting where the dictionary is unknown, we proposed a deep auto-encoder
architecture, whose weights and biases are optimized to accurately reproduce the training examples.
The underlying dictionary is estimated as the linear mapping employed by the final layer. The
performance of the proposed network-based sparse coding approach is significantly better than the
state-of-the-art techniques and on par in case of dictionary learning.

Acknowledgemnts

The authors would like to thank Tata Consultancy Services Research Scholar Program and Science
and Engineering Research Board, Government of India, for financial support.

References

[1] E.J. Candes and M. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag.,
vol. 25, pp. 21 -30, Mar. 2008.

[2] R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118-121, Jul. 2007.

1
T 025 ‘ :
= —Deep DL
w z —KSVD
o8t 02 —MQaDb
a
o 4
e o]
e} @)
X 0.6 0.15
= 0.
@ Deep DL g
—Deep I
g 0.4 —KSVD E 0.1
s —MOD o
O @)
o2 Z 005
=
n
[a)
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 10 20 30 40 50 60
TRAINING EPOCHS TRAINING EPOCHS
-4 T
—Deep DL
—KSVD
—MOD

RELATIVE TRAINING COST (dB)

10 20 30 40 50 60
TRAINING EPOCHS

Figure 2: (Color online) Deep DL vs. benchmark algorithms. The parameters are m = 20, n = 50, s = 3, and
N = 2000. The atom detection rate in (a) is the ratio of the number of detected atoms to n and the distance

metric in (b) is definedas k = £ 3°" | min (1 —

 in djT a; |) The training error profile in (c) indicates that
SJisn

deep DL does not overfit.

(3]
(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

[13]

[14]

D. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measure-
ments,” Comm. on Pure and Appl. Math. vol. 59 no. 8, pp. 1207-1223, 2006.

K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. Intl. Conf. on Machine
Learning, 2010.

B. Xin, Y. Wang, W. Gao, and D. Wipf, “Maximal sparsity with deep networks?,” arXiv:1605.01636v2,
May 2016.

U. S. Kamilov and H. Mansour, “Learning optimal nonlinearities for iterative thresholding algorithms,”
IEEE Signal Process. Lett., vol. 23, no. 5, pp. 747-751, May 2016.

N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in Opt., vol. 1, no. 3, pp. 123-231,
2013.

R. Tibshirani, “Regression shrinkage and selection via the LASSO,” J. Royal Stat. Society, Series B, vol.
58, no. 1, pp. 267-288, 1996.

I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint,” Comm. Pure Appl. Math., vol. 57, pp. 1413-1457, 2004.

H. Pan and T. Blu, “An iterative linear expansion of thresholds for ¢;-based image restoration,” IEEE Trans.
Image Process., vol. 22, no. 9, pp. 3715-3728, 2013.

T. Blu and F. Luisier, “The SURE-LET approach to image denoising,” IEEE Trans. Image Process., vol.
16, no. 11, pp. 2778-2786, 2007.

E. Xue, F. Luisier, and T. Blu, “Multi-Wiener SURE-LET deconvolution,” IEEE Trans. Image Process., vol.
22, no. 5, pp. 1954-1968, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv:1512.03385v1,
Dec. 2015.

[15] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,”
SIAM J. on Imag. Sci., vol. 2, no. 1, pp. 183-202, 2009.

[16] J. Martens, “Deep learning via Hessian-free optimization,” in Proc. 27" Intl. Conf. Machine Learning
(ICML), pp. 735-742, 2010.

[17] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries
for sparse representation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006.

[18] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionar-
ies,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, Dec. 2006.

[19] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame design,” in Proc. IEEE
Intl. Conf. on Accoust., Speech, and Sig. Proc., pp. 2443-2446, Mar. 1999.

	Introduction
	Learning activations using a linear expansion of thresholds (LETs)
	Training LETnet using gradient-descent
	Experimental validation of LETnet and fLETnet

	Deep auto-encoder architecture for dictionary learning (Deep DL)
	Conclusions

