
Implicit Weight Uncertainty in Neural Networks

Nick Pawlowski
Imperial College London

n.pawlowski16@imperial.ac.uk

Martin Rajchl
Imperial College London

m.rajchl@imperial.ac.uk

Ben Glocker
Imperial College London

b.glocker@imperial.ac.uk

Abstract

We interpret HyperNetworks [6] within the framework of variational inference
within implicit distributions[16, 8, 13]. Our method, Bayes by Hypernet, is able to
model a richer variational distribution than previous methods. Experiments show
that it achieves comparable predictive performance on the MNIST classification
task while providing higher predictive uncertainties compared to MC-Dropout [3]
and regular maximum likelihood training.

1 Introduction

Neural networks achieve state of the art results on a wide variety of tasks [11]. However, networks
that are trained with maximum likelihood or MAP-based techniques often output overconfident
predictions [5] and do not correctly capture the output uncertainty. This makes them unsuitable for
real life decision making, e.g. self-driving cars or disease detection employing deep learning methods.

Previous works proposed diverse approximate Bayesian inference methods to alleviate those concerns
by obtaining posterior distributions rather than point estimates. We follow works on variational
inference for Bayesian neural networks like [1, 12, 16, 3, 10]. We introduce Bayes by Hypernet, a
method for approximate Bayesian inference using implicit variational distributions. It combines the
work of [16, 8, 13] on implicit variational inference with HyperNetworks [6] to implicitly approximate
the weight distribution.

2 Variational Inference and Implicit Distributions

Variational inference for Bayesian neural networks aims to approximate the posterior distribution
p (w | D), where w are the weights of the neural network and D is the given dataset. Given this
distribution we can estimate the posterior prediction ŷ of a new data point x̂ as p (ŷ | x̂,D) =
Ew∼p(w|D) [p (ŷ | x̂,w)]. Because exact Bayesian inference is usually intractable in neural networks
we find a variational approximation q (w | θ) with parameters θ that minimises the Kullback-Leibler
(KL) divergence, so that

θ∗ = argmin
θ
KL (q (w | θ) ‖p (w | D)) (1)

= argmin
θ
KL (q (w | θ) ‖p (w))− Ew∼q(w|θ) [log p (D | w)] (2)

= argmin
θ

Ew∼q(w|θ)
[
log

q (w | θ)
p (w)

− log p (D | w)

]
. (3)
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We propose to use an implicit distribution as variational approximation. An implicit distribution
might have an intractable density functions butt is possible to sample from them and calculate
expectations of them as well as calculating gradients with respect to its parameters. [13, 8, 16]
extended the framework of variational inference to implicit distributions. We follow the notion
of prior-contrastive adversarial variational inference [8] where the KL term contrasts approximate
posterior with the prior. We estimate the log density ratio in Equation 3 using logistic regression.
Following an approach similar to generative adversarial networks [4] we can use a discriminator D
for density ratio estimation while a neural network acts as generator w = G(z | θ) and models the
variational distribution q (w | θ). Here, z is an auxiliary variable. This enables a two-step update
procedure1 with

L (D | G) = Ew∼G(z|θ) logD(w)− Ew∼p(w) log (1−D(w)) (4)

L (G | D) = Ez log
D (G(z | θ))

1−D (G(z | θ))
− Ez log p (D | G(z | θ)) (5)

where Equation 4 and Equation 5 are being used to update the discriminator and the generator.

The idea of using a generator to predict weights resembles the idea of HyperNetworks [6], which uses
a neural network to deterministically predict the weights of a bigger network. It lends our method
its name, Bayes by Hypernet. Here, we only employ static Hypernets that lead to a global variable
model and propose to parametrise the auxiliary variable z similar to [2] and conditional GANs [14]
by combining conditioning that encodes the position of the generated weight with an auxiliary noise
vector. In contrast to [10], our method works with arbitrary HyperNetworks and relies on density
ratio estimation for variational inference with implicit distributions.

3 Experiments

For all experiments, we employ a two layer fully-connected neural network with 64 and 256 hidden
units as HyperNetwork. The output size is dependent on the maximum size of the generated weights.
The output vector is sliced if a smaller weights vector is needed. The density ratio is estimated via
a discriminator with 2 hidden layers with 20 units each. A diagonal scale-mixture prior similar to
[1] is employed and the weights treated independently of each other. All experiments use Adam
[9] for optimisation. The source code to reproduce the proposed method is publicly available at
https://github.com/pawni/bayesbyhypernet.

Regression on a Toy Example: We follow the setup from [7] to build a toy dataset for a simple
regression task. A fully-connected network with 100 hidden units and ReLU activation is used and
apply a dropout with π = 0.5 to the hidden layer. The proposed method models the posterior of
the first layer weights and bias. We compare the proposed method with MC-Dropout [3], Bayes by
Backprop [1], and maximum likelihood training. Figure 1 shows a comparison of the results. The
error bands correspond to 1σ, 2σ and 3σ. We argue that our method provides the best fit as it also fits
the saddle point that is ignored by all other methods.

MNIST Digit Classification: We perform digit classification on MNIST with a fully-connected
network with two hidden layers with each 800 units. We employ the weight norm [15] parametrization
as used by [10] to implicitly learn the scaling factors of every layer. The rest of the weights are learned
using maximum likelihood training. We compare our method to MC-Dropout with π = 0.7 applied to
all hidden layers and maximum likelihood training. After 50 epochs of training, all networks exhibit
comparable test accuracy performance of 98.47%, 98.56% and 98.51%, for the proposed method,
maximum likelihood and MC-Dropout, respectively.

We follow [3, 12] and test the predictive uncertainty by evaluating the output probabilities of a rotated
image of a digit 3. We plot the output probabilities of maximum likelihood training in Figure 2a, ours,
Bayes by Hypernet, in Figure 2b, and MC-Dropout in Figure 2c. Maximum likelihood exhibits poorly
calibrated predictive uncertainties, while our method and MC-Dropout show uncertain predictions for
some rotation angles. Whereas MC-Dropout stays certain about the correct label for small rotations,
our method exhibits an overall higher predictive uncertainty which intuitively seems to make sense.

1This is closely related to http://www.inference.vc/variational-
inference-with-implicit-probabilistic-models-part-1-2/
#variationalinferenceanddensityratios

2

https://github.com/pawni/bayesbyhypernet
 http://www.inference.vc/variational-inference-with-implicit-probabilistic-models-part-1-2/#variationalinferenceanddensityratios
 http://www.inference.vc/variational-inference-with-implicit-probabilistic-models-part-1-2/#variationalinferenceanddensityratios
 http://www.inference.vc/variational-inference-with-implicit-probabilistic-models-part-1-2/#variationalinferenceanddensityratios


Figure 1: Toy example inspired by [7]. The proposed method exhibits the highest uncertainty and is
the only method to correctly model the saddle point. MC-Dropout strongly follows the maximum
likelihood result, while Bayes by Backprop fails at this task.

(a) Maximum Likelihood (b) Bayes by Hypernet (c) Dropout

Figure 2: Predictive distribution of a rotated 3 from the MNIST dataset. The points correspond to
the mean class probability and the error bars show the standard deviation of the prediction. Figure
inspired by [3, 12].

4 Discussion & Conclusions

We propose Bayes by Hypernet, interpreting HyperNetworks [6] as an implicit distribution which
we use as approximate distribution within variational inference. We show that on a toy task this
approximation yields better uncertainties than Dropout. On MNIST it yields comparable predictive
performance to other methods and similar uncertainties as MC-Dropout.

However, our experiments seem to not fully reproduce results of previous works that attributed better
performance on the toy dataset to MC-Dropout [12]. Further, the predictive uncertainty on the rotated
digit task seems to be inferior to [12] that uses CNNs rather than fully-connected networks. In
contrast to the work by [10] that holds a similar name as our work, we believe that the Bayesian
GANs presented in [16] are the closest work to ours.

Future work should explore the importance of the dimensionality of the auxiliary variables as well
as the complexity of the used HyperNetwork and density estimator. Further, this method could be
extended to dynamic HyperNetworks, which would lead to implicit distributions with latent rather
than global variables.
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