Approximate Gradient Descent for Training
Implicit Generative Models

Yingzhen Li
University of Cambridge
y1l494Qcam.ac.uk

Abstract

This abstract presents our first attempt at applying gradient approximation methods
to training implicit generative models. Concretely, the recently proposed Stein
gradient estimator is utilised to approximate the gradient of the KL divergence
from the (implicit) generator distribution to the data distribution. We empirically
demonstrate that the proposed approach learns faster than directly minimising the
maximum mean discrepancy.

1 Introduction

Implicit generative models are defined by a stochastic procedure that allows for direct generation
of samples, but not for the evaluation of model probabilities. There is a recent interest in a specific
type of algorithms to train implicit models, generative adversarial networks (GANs) (Goodfellow
et al.,|2014), which has been shown to be one of the most successful approaches to image and text
generation (Radford et al.,2016; [Yu et al.,|2017; |Arjovsky et al.| 2017} Berthelot et al.,[2017). In a
nutshell, many of these GAN approaches follow the “approximate-then-optimise” procedure, i.e. they
first approximate the model distribution or optimisation objective function using discriminators, and
then use those approximations to learn the generator’s parameters. However, for any finite number of
data points there exists an infinite number of functions, with arbitrarily diverse gradients, that can
approximate perfectly the objective function, and thus optimising such approximations can lead to
unstable training and poor results. Therefore the approximated objective function needs to be well
regularised in order to avoid over-fitting, which also explains the recent success of GAN stabilisation
approaches such as the Lipschitz constraint in Wasserstein GAN (Arjovsky et al., 2017).

In this abstract we explore an alternative route, i.e. “optimise-then-approximate”. Precisely, we
propose training the generative model by minimising the Kullback-Leibler (KL) divergence from it
to the data distribution using approximate gradient updates. This approximation employs the recently
proposed Stein gradient estimator (Li and Turner, |2017)) which is based on kernel methods. Therefore
we also compare with directly minimising the kernel maximum mean discrepancy (MMD) (Gretton
et al.l 20125 Li et al.| 2015} |Dziugaite et al.,[2015). Initial experiments on MNIST data demonstrate
that our approach learns faster than direct MMD minimisation.

2 Approximating KL gradients

Given a dataset D containing i.i.d. samples we would like to learn a probabilistic model ¢(x) for
the underlying data distribution p(x). In the case of implicit generative models, ¢() is defined by
a generative process: € ~ ¢(x) < z ~ 7(z),x = fo(z). Here f is often a deep neural network
parametrised by 8, and we assume f is differentiable w.r.t. 8. Now consider learning € by minimising
the exclusive KL-divergence ming KL[g||p]. Using the reparameterisation trick (Kingma and Welling|



2014} Rezende et al.,[2014), the gradient of the objective w.r.t. 8 is
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As we typically assume the tractability of V4 f, it remains to approximate both V log ¢(x) and
V. log p(). Li and Turner|(2017) has shown that these two gradients can be approximately computed
using samples from the data and the generator. More precisely, we first define KC(x, y) as a translation
invariant kernel that satisfies the boundary condition (Liu et al.|2016j|Li and Turner, 2017)). Such
kernels include many common choices like the RBF kernel. Also assume we sample K instances,
Y = {y',...,y%} ~ pand X = {x!,...,z%} ~ ¢, respectively. Then by denoting Kxx as
the matrix with entries K (z*, z7) and similarly for Kyv and Ky, the approximate gradients are
computed as
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with (V,Kxx)ij = Zle V. K(x', z*). Plugging-in the above approximation to the last line

g J

of equation (I) returns the approximate KL-gradient which is then fed to any optimiser in use,
e.g. Adam (Kingma and Ba, [2015). The choice the kernel /C(«, y) is crucial to the accuracy of the
estimator. L1 et al.| (2015) used a mixture of RBF kernels with different bandwidths. We follow
this strategy but instead use a mixture of IMQ kernels with different bandwidths, i.e. K(x,y) =

_1
ery:l {1 + é”x -yl \2} *. A key advantage of the Stein approach is that the derived gradient

estimator is ubiquitous and therefore it is directly applicable to the mixture kernel. By contrast,
another existing kernel-based technique, score matching gradient estimator (Hyvarinen, 2005} [Sasaki
et al.;2014; Strathmann et al.,|2015)), requires tedious derivations repeatedly even for the simplest
cases such as the RBF kernel, let alone the mixture kernel version'| Also |Li and Turner| (2017)
showed that the plug-in estimator using kernel density estimation (KDE) under-performs. Therefore
these two kernel-based gradient estimators are not considered in this abstract.

3 Initial Results

We present an initial experiment on learning implicit generative models using the (continuous) MNIST
data as a proof of concept. The generator follows the architecture design of DCGAN (Radford et al.,
2016)), and the latent variable z is of 50 dimensions. We use learning rate 0.00005 and Adam
optimiser (Kingma and Ba, [2015)). The mixture kernel contains N = 4 component, in which the
(square of the) bandwidths are computed with the median trick on samples X U Y then scaled up by
[0.5,1.0,2.0, 4.0], respectively. Figurevisualises the samples from the implicit generative model
trained using direct MMD (V-statistic) minimisation and approximate KL gradient descent method,
respectively. Here we use batch-size 100 in all the experiments to achieve a good speed-accuracy
trade-off, although sample quality can be further improved by increasing the mini-batch size.

We further consider quantitative evaluations of the trained models. During training, 500 images
are sampled from the model for every 50 epochs to compute the quantitative metrics. We compute
their nearest neighbours in the training set using /; distance, and obtain a probability vector p by
averaging over these neighbour images’ label vectors. We also train an MLP classifier that achieves

'Li and Turner| (2017) also presented a parametric version of the Stein gradient estimator that is derived in
similar spirit as the score matching estimator, therefore for the same reason we did not test its performance here.
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Figure 1: Visualisation of MNIST samples
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Figure 2: Quantitative evaluation on the trained models. The higher the better for the LHS panels
and the other way around for the RHS ones. Training speed: 6.84s/epoch for approx. KL SGD and
10.77s/epoch for MMD minimisation. See main text for details.

98.16% accuracy, and compute on the samples the inception score (Salimans et all 2016). The image
samples from the test data achieve 9.82 inception score using the trained classifier (maximum value
10). Figure[2]shows these quantitative measures, and it is clear that our approach learns faster and
better than direct MMD minimisation

4 Discussions on Kernel Learning

We have successfully demonstrated the feasibility of the proposed approximate KL gradient descent
training using the MNIST experiment. However our initial experiments on natural image datasets
such as cifar-10 show that both methods work poorly when using the same mixture IMQ kernel as in
the MNIST case. Therefore, like many kernel-based machine learning algorithms, the selection of
the kernel is key to the performance for both methods. In this regard, Sutherland et al.| (2016) selects
the hyper-parameters of the kernel by maximising the test power of a kernel two-sample test using
MMD as the test statistic. This approach further improves the generated image quality on MNIST but
has never been tested on natural image datasets. Another direction for kernel selection/learning is to
combine commonly used kernels with a deep neural network. [Wilson et al.| (2016)) introduced “deep
kernels” by applying a base kernel (e.g. RBF) to feature vectors obtained by a deep neural network
transformation. The very recently proposed MMD-GAN approach (L1 et al., [2017/)) introduced an
adversarial loss to learn the parameters of the neural network. We expect that the adversarial training
idea can be applied to the proposed algorithm with minimal adjustments.

*Experiments are timed on an NVIDIA GeForce GTX TITAN X GPU. We found that applying automatic
differentiation to the MMD V-statistic can be slower than manually computing Va&MMDy.quss (p, ) then applying
the chain rule to obtain gradients for 8. In the latter case we expect the MMD optimisation to be about the same
speed as the proposed approximate KL gradient descent approach.
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