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In this paper, we consider sparse latent space representation learning with the Deep Variational
Information Bottleneck (DVIB) principle [1]. The DVIB combines the information bottleneck and the
variational autoencoder methods. The information bottleneck (IB) [6] identifies relevant features with
respect to a target variable. It takes two random vectors x and y and searches for a third random vector
t which, while compressing x, preserves information contained in y. A variational autoencoder
(VAE) [3, 5] is a generative model which learns a latent representation t of x by using the variational
approach. The solution t of the IB is identified with the latent space t of the VAE.

The DVIB model suffers from two major shortcomings. First, the IB solution only depends on
the copula of x and y and is thus invariant to strictly monotone transformations of the marginal
distributions. DVIB does not preserve this invariance, which means that it is unnecessarily complex
by also implicitly modelling the marginal distributions. Second, the latent space of the IB is not sparse
which results in the fact that a compact feature representation is not feasible. We overcome these
shortcomings by leveraging information theoretic properties of mutual information. Our contribution
is therefore two-fold: we first restore the invariance properties of the information bottleneck solution
in the DVIB. Subsequently, we show that the restored invariance properties allow us to exploit the
sparse structure of the latent space of DVIB.

1 Model

1.1 Formulation of the DVIB

In order to specify our model, we start with a parametric formulation of the information bottleneck:

max
φ,θ
−Iφ(t;x) + λIφ,θ(t; y). (1)

The two terms in Eq. (1) have the following forms:

Iφ(T ;X) = Ep(x)DKL (pφ(t|x)‖p(t)) , (2)

and
Iφ,θ(T ;Y ) = Ep(x,y)Epφ(t|x) log pθ(y|t) + h(Y ). (3)

We denote with h(y) = −Ep(y)[log p(y)] the entropy for discrete y and the differential entropy for
continuous y. We then assume a conditional independence copula and Gaussian margins: pφ(t|x) =∏
j N(tj |µj(x), σ2

j (x)), where tj are the marginals of t = (t1, . . . , td), ct|x is the copula density
of t|x, and the functions µj(x), σ2

j (x) are implemented by deep networks. We make the same
assumption about pθ(y|t).

1.2 Motivation: Issues with Lack of Invariance to Marginal Transformations

1. On the encoder side (Eq. (2)), the optimisation is performed over the parametric conditional
margins pφ(tj |x) in Iφ(t;x) = Ep(x)DKL (pφ(t|x)‖p(t)). When a strictly monotone transformation
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xj → x̃j is applied, the required invariance property can only be guaranteed if the model for φ (in
our case a deep network) is flexible enough to compensate for this transformation.

2. On the decoder side, assuming Gaussian margins in pθ(yj |t) might be inappropriate for modelling
y if the domain of y is not equal to the reals, e.g. when y is defined only on a finite interval. If used in
a generative way, the model might produce samples outside the domain of t.

3. Also on the decoder side, we have: Iφ(t; y) = Ep(x,y)Epφ(t|x) log pθ(y|t)+h(y). The authors of [1]
argue that since h(y) is constant, it can be ignored in computing Iφ(t; y) and the variational bound
thereon. This is true for a fixed discrete y, but not for the class of strictly increasing transformations
of y, which should be the case for a model specified with mutual informations only. Since the left
hand side of this equation is invariant against strictly increasing transformations, the first term on the
right hand side cannot share this invariance property, because h(y) also depends on strictly increasing
transformations. In fact, under such transformations, the differential entropy h(y) can take any value
from −∞ to +∞.

1.3 Proposed Solution

The issues described in Section 1.2 can be fixed by using transformed variables (x = (x1, . . . , xd)):

x̃j = Φ−1(F̂ (xj)), tj = F̂−1(Φ(x̃j)), (4)

where Φ is the Gaussian cdf and F̂ is the empirical cdf. In the copula literature, these transformed
variables are sometimes called normal scores. Note that the mapping is (approximately) invertible:
xj = F̂−1(Φ(x̃j)), with F̂−1 being the empirical quantiles treated as a function (e.g. by linear
interpolation). This transformation fixes the invariance problem on the encoding side (issue 1), as well
as the problems on the decoding side: problem 2 disappeared because the transformed variables x̃j are
standard normal distributed, and problem 3 disappeared because the decoder part (Eq. (3)) now has the
form: Ep(x,y)Epφ(t|x) log pθ(ỹ|t) = Iφ(T ;Y ) + MI(Y ) −

∑
j h(Ỹj) = Iφ(T ; Ỹ ) − h(cinv(u(ỹ)))

where cinv(u(ỹ)) is indeed constant for all strictly increasing transformations applied to y.

1.4 Sparsity of the Latent Space

The assumption that x and y are jointly Gaussian-distributed leads to the Gaussian Information
Bottleneck [2] where the solution t can be proved to also be Gaussian distributed, i.e. for (x, y) ∼

N
(

0,

(
Σx Σyx
Σxy Σy

))
, the optimal t is a noisy projection of x of the following form:t = Ax+ ξ,

ξ ∼ N (0, I), t|x ∼ N (Ax, I), t ∼ N (0, AΣxA
> + I). The mutual information between x and t

is then equal to: I(x; t) = 1
2 log |AΣxA

> + I|. In the sparse Gaussian Information Bottleneck, we
additionally assume that A is diagonal, so that the compressed t is a sparse version of x.

Sparse latent space of the Deep Variational Information Bottleneck. We now proceed to ex-
plain the sparsity induced in the latent space of the copula version of the DVIB introduced in
Section 1.3. Consider the general Gaussian Information Bottleneck (with x and y jointly Gaus-
sian and a full matrix A) and assume: a deterministic pre-transformation of x parametrised by
β z = fβ(x), an implicit representation of A µ = Az, so that the optimisation of the mu-
tual information I(x, t) in min I(x; t) − λI(t; y) is performed over µ and β. The estimator of
I(x; t) = 1

2 log |AΣxA
t + I| then becomes: Î(x; t) = 1

2 log
∣∣ 1
nMM> + I

∣∣ , where the matrix M
contains n i.i.d. samples of µ, i.e. M = AZ with Z = (z1, . . . , zn)> being a matrix of dimensions
n × p. If the pre-transformation fβ were such that D := 1

nMM> were diagonal, then this would
simplify to Î(x; t) = 1

2

∑
i log(Dii + 1), which is equivalent to the Sparse Gaussian Information

Bottleneck model with a diagonal covariance matrix. We can, however, approximate this case
by modifying Î(x; t), such that we only consider the diagonal part of the matrix M , resulting in:
I ′(x; t) = 1

2 log
∣∣diag( 1

nMM> + I)
∣∣. Note that for any positive definite matrix B, the determi-

nant |B| is always upper bounded by
∏
iBii = |diag(B)|, which is a consequence of Hadamard’s

inequality.

Thus, instead of minimising Î(x; t), we minimise an upper bound I ′(x; t) ≥ Î(x; t) in the Information
Bottleneck cost function. Equality is obtained if the transformation fβ , which we assume to be part of
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an “end-to-end” optimisation procedure, indeed successfully diagonalised D = ( 1
nMM>+ I). Note

that equality in the Hadamard’s inequality is equivalent to D + I being orthogonal, thus fβ is forced
to find the “most orthogonal” representation of the inputs in the latent space. Using a highly flexible
fβ (for instance, modelled by a deep neural network), we might approximate this situation reasonably
well. This explains how the copula transformation translates to a low-dimensional representation of
the latent space.

2 Experiments

Dataset and Test set-up. We analysed the unnormalized Communities and Crime dataset [4] from
the UCI repository2, in order to demonstrate the significance of the proposed model. In our model,
we used a latent layer with 18 nodes that modelled the mean of the 18-dimensional latent space t.
The stochastic encoder as well as the stochastic decoder consisted of a neural network with two
fully-connected hidden layers with 100 nodes each. We used the softplus function as the activation
function. The decoder used a Gaussian likelihood and λ was multiplied by 1.01 every 500 iterations.
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Figure 1: (a) Information curves along with dimensionalities of the latent spaces. Representation of
the latent space t of two dimensions without (b) and with (c) the copula transformation.

Results. First, we analysed the compression of predictive variables with respect to the target
variables (Figure 1(a)). The information curve for the copula model yields larger values of mutual
information for the same λ. In addition, the application of the copula transformation led to a much
lower number of used dimensions in the latent space with higher mutual information scores. We
subsequently performed a qualitative latent space analysis. Figures 1(c) and 1(b) illustrate the
difference in the disentanglement of the latent spaces of the DVIB model with and without the
copula transformation. We selected the target variable arsons and plotted it against the target variable
larcenies. The latent space t of DVIB, appears completely unstructured (Figure 1(b)) whereas we
could identify a much clearer structure in the latent space for the copula version (Figure 1(c)).

3 Conclusion

We have presented a novel approach to compact representation learning of deep latent variable
models. To this end, we showed that restoring invariance properties of mutual information in the
Deep Variational Information Bottleneck with a copula transformation leads to disentanglement of
the features in the latent space. Subsequently, we analysed how the copula transformation translates
to sparsity in the latent space of the considered model. The proposed model allows for a simplified
and fully non-parametric treatment of marginal distributions which has the advantage that it can be
applied to distributions with arbitrary marginals.

2http://archive.ics.uci.edu/ml/datasets/communities+and+crime+unnormalized
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