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Abstract

We propose a new sequential algorithm for Sampling Importance Resampling.
The algorithm serves as a solution to expensive evaluation of importance weight,
and can be interpreted as stochastically and iteratively refining the particles by
correcting them towards the target distribution as pool size increases. We apply
this algorithm to variational inference with Importance Weighted Lower Bound
and propose a memory-scalable training procedure[ﬂthat implicitly improves the
variational proposal.

1 Sequentializing Sampling Importance Resampling

1.1 Sampling Importance Resampling

Given an unnormalized target distribution p(z) and proposal distribution ¢(z), the Sampling Impor-
tance Resampling (SIR) proceeds as follows:

1. draw z; for 1 < i < n from ¢(x)

P(xs)

q(zi)

3. calculate the normalized importance weight w; = Z“’—w

2. calculate the importance weight w; =

4. draw index variable y; ~ mul(w@1, ..., w,) for 1 < j <m

The density of the set of resampled particles z,, , ..., zy,, should resemble the pdf of the target
distribution, and the new samples will be approximately distributed by p(z) (Bishopl 2007). On
average, the samples can be improved by increasing the pool size n, and becomes corrected when
n — o0. The procedure is visualized in Figure

1.2 SeqSIR

The above procedure can be combined with the idea of reservoir sampling, so that we need not
evaluate all n samples at the same time, which will be an issue when n is large or when evaluation
of a sample (i.e. computation of w;) is expensive. The intuition is to keep a running sum of the
importance weights while we evaluate the pool samples sequentially, and then decide to keep the old
sample or replace it with the new one based on the ratio of the new sample’s importance weight to
the running sum. This is what we call Sequentialized Sampling Importance Resampling (SEQSIR),
which is summarized in Algorithm[I] See Figure[Ib|for illustration.

Note that density and importance weight are computed on log scale to deal with numerical instability,
and log-sum-exp operation (LSE) is used in place of addition to calculate the running sum of

'See https://github.com/CW-Huang/SeqIWAE for implementation.
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Algorithm 1 Sequentialized Sampling Importance Resampling and Stochastic Iterative Refinement

procedure SEQSIR (

logp, logq > unnormalized target density function and proposal density function

SS > n samples to be evaluated
)

A<+ —o0 > initialize accumulated sum of importance weight on log scale

s old« 0 > initialize sample

n< len([sl,...,sn])
for i=1,....,n do

S_new = ss[i]

A, s_old «+— STOCHREFINE(logp, logq, A, s_old, s_new)
return s_old

procedure STOCHREFINE (

logp, logq > unnormalized target density function and proposal density function
> accumulated sum of importance weight on log scale
s_old, s_new > old and new samples

w_new < logp(s_new) - logq(s_new)

A < LSE(A, w_new)

u < unif(0,1)

if w_new - A >=log u then return A, s_new
else return A, s_old
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(a) Sampling Importance Resampling: All the sam-  (b) Sequentialized Sampling Importance Resam-
ples are evaluated in parallel and resampled accord-  pling: All the samples start from the same location,
ing to the importance weights. and resampled when a new location is proposed.

Figure 1: Comparison of batch SIR and sequentialized SIR

importance weights. The algorithm can be easily made parallelizable by comparing multiple uniform
samples as particles at the same time; see Figure 2] for an example of independent evaluations.

2 Estimating Gradient of Importance Weighted Lower Bound

When dealing with intractable integral in the marginal likelihood of models such as deep latent Gaus-
sian models (Kingma and Welling, 2013 Rezende et al., [2014), one needs to resort to approximate
inference. Variational methods are a family of algorithms that cast approximate inference as an
optimization problem (Jordan et al.,|1999): we maximize a lower bound (such as the evidence lower
bound, ELBO) on the marginal likelihood:

p(z, 2)
q(2)

Lerso = BEy(z) [log } < logp(z) (1)



for some latent variable z, observed variable x, predefined joint distribution p and variational
distribution q.

When combined with Monte Carlo sampling, one can derive a tighter lower bound than the traditional
lower bound by drawing multiple samples (say, n) to evaluate the likelihood ratio, known as the
importance weighted lower bound (Burda et al.,|2015)), or IWLB:

n

1 p(z, 2;)
< Ln = N o
Lerpo < LYwis E{zi}ﬂq(z) llog El n aC) ] < log p(x) 2)

1=

for some n > 1. The first inequality becomes equality when n = 1, and the second gap can be closed
by taking n — oo. This is an appealing property, as to make the training update less unbiased, one
simply needs to draw more samples from the proposal. However, one problem with this method
is that training algorithms scale linearly with the number of samples in time and memory ﬂ Due
to memory constraint in practice, training with multiple samples is usually achieved at the cost of
smaller batch size. This increases the variance of estimating the gradient as we draw less samples
from the data distribution, and precludes the possibility of training with even larger pool size to
enjoy the asymptotic property of importance sampling. In this regard, one can modify the training
procedure of maximizing IWLB by using SEQSIR, which we describe below.

2.1 SeqIlWAE

Algorithm 2 Gradient estimate and stochastic update of IWAE
procedure SEQIWAE (

PZ, PXZ, QZX > functions of prior, likelihood and approximate posterior
UPDATE > update function of VAE
n > pool size
X > minibatch of training data

function LOGP(e)

return log Pz(e) + log PXZ(x,e)
function LOGQ(e)

return log QzX(e,x)
epss = randn(n)
eps = SEQSIR( LOGP, LOGQ, epss )
UPDATE(X,eps)

In this section, we develop a sequentialized training algorithm for Importance Weighted Autoencoder
(Burda et al.,[2015)) called SeqIWAE, which can also be applied to other variational inference problems
that seek to maximize IWLB.

The reparameterization trick (Rezende et al.,|2014;|Kingma and Welling, |2013)) allows one to separate
noise from parameters of a sample drawn from a distribution. Take any Gaussian distribution as
example. We can first draw samples e from a standard Gaussian and then transform the sample by
taking z = p 4 o - €. One can thus express a one-sample Monte Carlo estimate of the ELBO and
estimate of the gradient of the ELBO as functions of the input data point and the parameter-free
noise, i.e. Lrrpo(x,€) and VyLErpo(x, €). In Algorithm 2] we combine SEQSIR to estimate the
gradient of Ly 1 p by selecting from a pool of parameter-free samples based on their scores.

This procedure leaves the estimate of gradient unbiased. As shown by (Burda et al.,2015)), the update
rule is as follows:

Voltwrs =By D @i VoLerpo(w,e) 3)
=1

where 10; = Z? (;()f )(Zf(‘;"i/ )q/(;é‘;‘)x) is the normalized importance weight and z; = g(e;, x) is reparam-

eterized sample through parameter-free noise. As the derivation below shows, Eq. [3]can be estimated

“Sublinearity in time complexity can be achieved via parallelizing evaluation of the importance weights.



Figure 2: SeqSIR as stochastic iterative refinement (Bachman and Precup, 2015; |Cremer et al.| [2017):
when the pool size increases, the samples drawn from the proposal distribution are corrected towards
the true posterior

by resampling (originally suggested in Burda et al.|(2015)), and thus by the stochastic refinement
procedure introduced in the previous section.
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As a result, the gradient of L}, ; 5 can be estimated by estimating VLg 1, po using the sampled
noise €; selected by taking €;+1 = €;41 if uj11 > %, otherwise €, where w1 ~ unif(0,1)

for j = 2, ..., n. This corresponds to STOCHREFINE in Algorithm[I]} Each iteration in expectation
improves the approximation as it corresponds to the estimate of the gradient of a tighter bound. It
can also be viewed as the same lower bound as ELBO, but with the original proposal distribution
corrected towards the true posterior as one draw more samples iteratively (Bachman and Precupl
2015}, [Cremer et al., [2017), as in Figure 2]

Furthermore, note that sublinearity in time complexity now becomes O(n) as evaluation of importance
weights is sequential, and that memory goes from O(n) to O(1).

3 Conclusion

In this note, we developed a method to sequentially resample from a pool of particles based on their
importance weights. Our algorithm finds application in approximate inference where evaluation
of importance weight is expensive such as deep generative models (i.e. importance weighted
autoencoders). Such a slight modification of the update rule is simple to plug in, and makes it possible
for one to enjoy the asymptotic property of importance sampling by trading time for memory.
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