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Abstract

Bayesian Neural Networks (BNNs) have recently received increasing attention for
their ability to provide well-calibrated posterior uncertainties. However, model
selection—even choosing the number of nodes—remains an open question. In
this work, we apply a horseshoe prior over node pre-activations of a Bayesian
neural network, which effectively turns off nodes that do not help explain the
data. We demonstrate that our prior finds compact network structures even when
the number of nodes required is grossly over-estimated. Moreover, this model
selection over the number of nodes doesn’t come at the expense of predictive or
computational performance; in fact, we learn smaller networks with comparable
predictive performance to current approaches.

1 Introduction

Bayesian Neural Networks (BNNs) are increasingly the de-facto approach for modeling stochastic
functions. By treating the weights in a neural network as random variables, and performing pos-
terior inference on these weights, BNNs can avoid overfitting in the regime of small data, provide
well-calibrated posterior uncertainty estimates, and model a large class of stochastic functions with
heteroskedastic and multi-modal noise. These properties have resulted in BNNs being adopted in
applications ranging from active learning [1, 2] and reinforcement learning [3, 4]. While there have
been many recent advances in training BNNs [1, 3, 5, 6, 7], model-selection in BNNs has received
relatively less attention. Unfortunately, the consequences for a poor choice of architecture are se-
vere: too few nodes, and the BNN will not be flexible enough to model the function of interest; too
many nodes, and the BNN predictions will have large variance. We note that these Bayesian model
selection concerns are subtlely different from overfitting and under-fitting concerns that arise from
maximum likelihood training: here, more expressive models (e.g. those with more nodes) require
more data to concentrate the posterior. When there is insufficient data, the posterior uncertainty
over the BNN weights will remain large, resulting in large variances in the BNN’s predictions. We
illustrate this issue in Figure 2, where we see a BNN trained with too many parameters has higher
variance around its predictions than one with fewer. Thus, the core concern of Bayesian model se-
lection is to identify a model class expressive enough that it can explain the observed data set, but
not so expressive that it can explain everything [8, 9].

Model selection in BNNs is challenging because the number of nodes in a layer is a discrete quan-
tity, forcing practitioners to perform onerous searches over different layer sizes. We demonstrate
that we can perform computationally-efficient and statistically-effective model selection in BNNs
by placing Horseshoe priors [10] over the variance of weights incident to each node in the network.
Independently of this work, Horseshoe priors were recently proposed by [11] as one of several ways
to compress BNNs for fast evaluations at test time. Our work offers an additional viewpoint, in
which we focus on model selection and explore opportunities for parameter-tying that dramatically
decrease training time and storage requirements without sacrificing sparsity or predictive perfor-
mance.
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Figure 1: LEFT: Predictive distributions from a single layer BNN with varying widths and aN (0, I) prior on
weights, trained on 20, 100, and 200 noisy samples from y = sin(x) + ε, ε ∼ N (0, 0.1). With fixed data
increasing BNN capacity leads to inflated uncertainty estimates and underfitting.

Automatic Model Selection through Horseshoe Priors We show that through carefully con-
structed priors we can induce sparsity at the unit level and prune away units that do not help explain
the data well. Let wkl ∈ RKl−1+1 denote the set of all weights incident into unit k of hidden layer
l. We place the following prior in wkl,

wkl | τkl, υl ∼ N (0, (τ2klυ
2
l )I), τkl ∼ C+(0, b0), υl ∼ C+(0, bg). (1)

Here, I is an identity matrix, a ∼ C+(0, b) is the Half-Cauchy distribution with density p(a|b) =
2/πb(1 + (a2/b2)) for a > 0, τkl is a unit specific scale parameter, while the scale parameter υl is
shared across the layer. This prior over weights follows the horseshoe distribution [10]. It exhibits
Cauchy-like flat, heavy tails while maintaining an infinitely tall spike at zero. Consequently, it has
the desirable property of allowing sufficiently large node weight vectors wkl to escape un-shrunk—
by having a large scale parameter—while providing severe shrinkage to smaller weights. This is in
contrast to Lasso style regularizers and their Bayesian counterparts that provide uniform shrinkage
to all weights. By forcing the weights incident on a unit to share scale parameters, Equation 1
induces sparsity at the unit level, turning off units that are unnecessary for explaining the data well.

Parameterizing for More Robust Inference: Decomposing the Cauchy Distribution While a di-
rect parameterization of the Half-Cauchy distribution in Equation 1 is possible, it leads to challenges
during variational learning. Standard exponential family variational approximations struggle to cap-
ture the thick Cauchy tails, while a Cauchy approximating family leads to high variance gradients.
Instead, we use a more convenient auxiliary variable parameterization [12],

a ∼ C+(0, b)⇐⇒ a2 | λ ∼ Inv-Gamma(
1

2
,

1

λ
);λ ∼ Inv-Gamma(

1

2
,

1

b2
), (2)

where v ∼ Inv-Gamma(a, b) is the Inverse Gamma distribution with density p(v) ∝
v−a−1exp{−b/v} for v > 0. Since the number of output units is fixed by the problem at hand,
there is no need for sparsity inducing prior for the output layer. We place independent Gaussian
priors, wkL ∼ N (0, κ2I) with vague hyper-priors κ ∼ C+(0, bκ = 5) on the output layer weights.

Parameterizing for More Robust Inference: Non-Centered Parameterization The horseshoe
prior of Equation 1 exhibits strong correlations between the weightswkl and the scales τklυl. Indeed,
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Figure 2: Graphical models capturing the conditional dependencies assumed by Bayesian Neural Networks
with Horseshoe priors. Left: Centered parameterization, Right: Non-centered parameterization necessary for
robust inference.

its favorable sparsity inducing properties stem from this coupling. However, an unfortunate conse-
quence is a strongly coupled posterior that exhibits pathological funnel shaped geometries [13, 14]
and is difficult to reliably sample or approximate. Fully factorized approximations are particularly
problematic and can lead to non-sparse solutions erasing the benefits of using the horseshoe prior.
Following, recent work [13, 14] we adopt a non-centered parameterization that we find empiri-
cally to significantly improve the quality of posterior approximation. We reformulate Equation 1 as
βkl ∼ N (0, I), wkl = τklυlβkl, where the distribution on the scales are left unchanged. Figure 2
summarizes the conditional dependencies assumed by the centered and the non-centered Horseshoe
BNN models.

2 Learning Bayesian Neural Networks with Horseshoe priors

We use black box variational inference to approximate the intractable posterior p(θ | D).

Approximating Family We use the following factorized variational family,

q(θ | φ) = q(κ | φκ)q(ρκ | φρκ)
∏
i,j,l

q(βij,l | φβij,l);
∏
k,l

q(τkl | φτkl)q(λkl | φλkl)
∏
l

q(υl | φυl)q(ϑl | φϑl).

(3)

We restrict the variational distribution for the non-centered weight βij,l between units i in layer
l − 1 and j in layer l, q(βij,l | φβijl) to the Gaussian family N (βij,l | µij,l, σ2

ij,l). The non-
negative scale parameters τ2kl and υ2l and the variance of the output layer weights are constrained
to the log-Normal family, q(ln τ2kl | φτkl) = N (µτkl , σ

2
τkl

), q(ln υ2l | φυl) = N (µυl , σ
2
υl

), and
q(ln κ2 | φκ) = N (µκ, σ

2
κ). The optimal variational approximations of the auxiliary variables ϑl,

λkl, or ρκ follow inverse Gamma distributions. Details can be found in the supplement.

Alternate Approximating Family Choices Although, we employ a fully factorized approximation
in the reparameterized space the non-centered parameterization ensures that we get a limited amount
of sharing for free. To see this, observe that the variational distribution onwkl implied by Equation 3
is q(wkl | τkl, υl) = N (wkl | τklυlµkl, (τklυl)2Ψ), where Ψ is a diagonal matrix with elements
populated by σ2

ij,l and µkl consists of the corresponding variational means µij,l. The variational
distributions of the weights incident into a unit are thus coupled through τklυl while all weights in
a layer are coupled through the layer wise scale υl. This view immediately suggests an alternate
approximating family, wherein we restrict q(wkl | τkl, υl) to an isotropic Gaussian by constraining
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Figure 3: TOP:Non-centered parameterization is essential for robust inference. A synthetic nearly linear
classification problem generated from sampling a 2-2-1 network. Expected weights inferred with a Bayesian
neural network with Gaussian priors on weights, centered horseshoe, and a non-centered horseshoe parame-
terization. The boxplots display Eq[wkl]. BOTTOM: The first three columns contrast test accuracy against
training time for the tied and full approximations, averaged over 5 random splits, and run for 500 epochs each.
On the right, we compare against other competing methods.

Ψ to an identity matrix. By tying the weight variances together, we effectively halve1 the number
of variational parameters to be learned and stored. Further, we demonstrate that the tied variational
family leads to significant training speedups. We emphasize that this is complimentary to the test-
time speedups from unit pruning.

3 Experiments

In Figure 3, we demonstrate that we demonstrate the benefits of non-centered parameterization on
synthetic data, and illustrate training speed-ups afforded by parameter tying on a gesture recognition
task. Additional details can be found in the supplement.
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A Black Box Variational Inference

Recent progress in black box variational inference [15, 5, 16, 17] provides a recipe for subvert-
ing this difficulty. These techniques provide noisy unbiased estimates of the gradient ∇φL̂(φ),
by approximating the offending expectations with unbiased Monte-Carlo estimates and relying on
either score function estimators [18, 16] or reparameterization gradients [15, 5, 17] to differen-
tiate through the sampling process. With the unbiased gradients in hand, stochastic gradient as-
cent can be used to optimize the ELBO. In practice, reparameterization gradients exhibit signifi-
cantly lower variances than their score function counterparts and are typically favored for differ-
entiable models. The reparameterization gradients rely on the existence of a parameterization that
separates the source of randomness from the parameters with respect to which the gradients are
sought. For our Gaussian variational approximations, the well known non-centered parameteriza-
tion, ζ ∼ N (µ, σ2) ⇔ ε ∼ N (0, 1), ζ = µ + σε, allows us to compute Monte-Carlo gradients,

∇µ,σEqw [g(w)]⇔ ∇µ,σEN (ε|0,1)[g(µ+ σε)]

≈ 1

S

∑
s

∇µ,σg(µ+ σε(s)),
(4)

for any differentiable function g and ε(s) ∼ N (0, 1). Further, as shown in [19], the variance of
the gradient estimator can be provably lowered by noting that the weights in a layer only affect
L(φ) through the layer’s pre-activations and directly sampling from the relatively lower-dimensional
variational posterior over pre-activations.

Variational distribution on pre-activations Recall that the pre-activation of node k in layer l, ukl
in our non-centered model is ukl = τklυlβ

T
kl[a, 1]T . The variational posterior for the pre-activations

is given by,

q(ukl | µukl , σ
2
ukl) = N (ukl | µukl , σ

2
ukl),

µukl = τ
(s)
kl υ

(s)
l µTβkla; σ2

ukl = τ
(s)
kl

2
υ
(s)
l

2
σ2T

βkla
2,

(5)

where a is the input to layer l, µβkl and σ2
βkl

are the means and variances of the variational posterior

over weights incident into node k, and a2 denotes a point wise squaring of the input a, and τ (s)kl , υ(s)l
are samples from the corresponding posteriors. Since, the variational posteriors of τkl and υl are
restricted to the log-Normal family, their product τklυl is another log-Normal random variable and
can be directly sampled.

Algorithm We now have all the tools necessary for optimizing Equation ??. By recursively sam-
pling from the variational posterior of Equation 5 for each layer of the network, we are able to for-
ward propagate information through the network. Owing to the reparameterizations (Equation 4),
we are also able to differentiate through the sampling process and use reverse mode automatic differ-
entiation tools [20] to compute the relevant gradients. With the gradients in hand, we optimize L(φ)
with respect to the variational weights φβ , per-unit scales φτkl , per-layer scales φυl , and the vari-
ational scale for the output layer weights, φκ using Adam [21]. Conditioned on these, the optimal
variational posteriors of the auxiliary variables ϑl, λkl, and ρκ follow Inverse Gamma distributions.
Fixed point updates that maximize L(φ) with respect to φϑl , φλkl , φρκ , holding the other variational
parameters fixed are available. It can be shown that,

q(λkl | φλkl) = Inv-Gamma(λkl | 1,E[
1

τkl
] +

1

b20
). (6)

The distributions of the other auxiliary variables are analogous. See supplement for derivations.
The overall algorithm (see Algorithm 1, involves cycling between gradient and fixed point updates
to maximize the ELBO in a coordinate ascent fashion. Observe that all parameters are learned
jointly.

Computational Efficiency Just as with standard back propagation, each iteration of the proposed
black-box variational inference algorithm involves a forward pass and a backward pass. The compu-
tational complexity of the forward pass is identical to that of backprop and standard VI-based BNN
learning. The backward-pass for a vanilla BNN is about two times more expensive than for a NN,
stemming from having to update both weight means and weight variances.
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Algorithm 1 HS-BNN Training
1: Input Model p(D, θ), variational approximation q(θ | φ), number of iterations T.
2: Output: Variational parameters φ
3: Initialize variational parameters φ.
4: for T iterations do
5: Update φβ , φτkl , φυl , φκ ← ADAM(L(φ)).
6: Conditioned on φτkl , φυl , and φκ update φϑl , φλkl , φρκ using Equation 6.

The HS-BNN employing the fully factorized variational approximation has only a few additional
parameters compared to the vanilla BNN: there exist scale and auxiliary random variables per unit,
and each layer also has a global scale and auxiliary random variable. The computational cost of
updating these is dwarfed by the cost of weight updates, and so our training is only marginally more
expensive than vanilla BNNs. The tied variational approximation has far fewer parameters than
vanilla BNNs for moderate to large networks and is consequently faster to train.

B Fixed point updates

The ELBO corresponding to the non-centered HS model is,

L(φ) = E[ln Inv-Gamma(κ | 1/2, 1/ρκ)] + E[ln Inv-Gamma(ρκ | 1/2, 1/b2κ)]

+
∑
n

E[ln p(yn | β, T , κ, xn)]

+

L−1∑
l=1

KL∑
k=1

E[ln Inv-Gamma(τkl | 1/2, 1/λkl)]E[ln Inv-Gamma(λkl | 1/2, 1/b20)]

+

L−1∑
l=1

E[ln Inv-Gamma(υl | 1/2, 1/ϑl)] + E[ln Inv-Gamma(ϑl | 1/2, 1/b2g)]

+

L−1∑
l=1

Kl∑
k=1

E[ln N (βkl | 0, I)] +

KL∑
k=1

E[ln N (βkL | 0, I)] + H[q(θ | φ)].

(7)

With our choices of the variational approximating families, all the entropies are available in closed
form. We rely on a Monte-Carlo estimates to evaluate the expectation involving the likelihood
E[ln p(yn | β, T , κ, xn)].

The auxiliary variables ρκ, ϑl and ϑl all follow inverse Gamma distributions. Here we derive for
λkl, the others follow analogously. Consider,

ln q(λkl) ∝ E−qλkl [ln Inv-Gamma(τkl | 1/2, 1/λkl)] + E−qλkl [ln Inv-Gamma(λkl | 1/2, 1/b20)],

∝ (−1/2− 1/2− 1)ln λkl − (E[1/τkl] + 1/b20)(1/λkl),
(8)

from which we see that,

q(λkl) = Inv-Gamma(λkl | c, d),

c = 1, d = E[
1

τkl
] +

1

b20
.

(9)

Since, q(τkl) = ln N (µτkl , σ
2
τkl

), it follows that E[ 1
τkl

] = exp{−µτkl + 0.5 ∗ σ2
τkl
}. We can thus

calculate the necessary fixed point updates for λkl conditioned on µτkl and σ2
τkl

. Our algorithm uses
these fixed point updates given estimates of µτkl and σ2

τkl
after each Adam step.

C Related Work

Early work on Bayesian neural networks can be traced back to [22, 23, 24]. These early approaches
relied on Laplace approximation or Markov Chain Monte Carlo (MCMC) for inference. They do not
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scale well to modern architectures or the large datasets required to learn them. Recent advances in
stochastic variational methods [3, 5], black-box variational and alpha-divergence minimization [7,
16], and probabilistic backpropagation [1] have reinvigorated interest in BNNs by allowing inference
to scale to larger architectures and data.

Work on learning structure in BNNs remains relatively nascent. In [25] the authors use a cascaded
Indian buffet process to learn the structure of sigmoidal belief networks. While interesting, their
approach appears susceptible to poor local optima and their proposed Markov Chain Monte Carlo
based inference does not scale well. More recently, [3] introduce a mixture-of-Gaussians prior on
the weights, with one mixture tightly concentrated around zero, thus approximating a spike and
slab prior over weights. Their goal of turning off edges is very different than our approach, which
performs model selection over the appropriate number of nodes. Our proposed Horseshoe prior
instead employs an infinite scale mixture-of-Gaussians. Beyond providing stronger sparsity, this is
attractive because it obviates the need to directly specify mixture component variances or the mixing
proportion as required by the prior proposed in [3]. Only the prior scales of the variances needs to
be specified and in our experiments, we found results to be relatively robust to the values of these
hyper-parameters. Recent work [26] indicates that further gains may be possible by a more careful
tuning of the scale parameters. Others [19, 27] have noticed connections between Dropout [28]
and approximate variational inference. In particular, [29] show that the interpretation of Gaussian
dropout as performing variational inference in a network with log uniform priors over weights leads
to sparsity in weights. This is an interesting but orthogonal approach, wherein sparsity stems from
variational optimization instead of the prior.

There also exists work on learning structure in non-Bayesian neural networks. Early work [30, 31]
pruned networks by analyzing second-order derivatives of the objectives. More recently, [32] de-
scribe applications of structured sparsity not only for optimizing filters and layers but also computa-
tion time. Closer to our work in spirit, [33], [34] and [35] who use group sparsity to prune groups of
weights—e.g. weights incident to a node. However, these approaches don’t model the uncertainty
in weights and provide uniform shrinkage to all parameters. Our horseshoe prior approach similarly
provides group shrinkage while still allowing large weights for groups that are active. As mentioned,
[11] recently used horseshoe priors for model compression.

D Experiments

In this section, we present experiments that evaluate various aspects of the proposed Bayesian neu-
ral network with horseshoe priors (HS-BNN). We begin with experiments on synthetic data that
showcase the model’s ability to guard against under fitting and recover the underlying model.
We then proceed to a challenging gesture recognition task, and standard classification, and re-
gression benchmarks. For regression problems we use Gaussian likelihoods with an unknown
precision γ, p(yn | f(W,xn), γ) = N (yn | f(W,xn), γ−1). We place a vague prior on the
precision,γ ∼ Gamma(6, 6) and approximate the posterior over γ using a Gamma distribution.
The corresponding variational parameters are learned via a gradient update during learning. We use
a Categorical likelihood for the classification problems. In a preliminary study, we found larger
mini-batch sizes improved classification performance, and in all experiments we use a batch size of
512. For the regression experiments we used a batch size of 128. The hyper parameters b0 and bg
are both set to one.

Regression Experiments We follow the experimental protocol proposed in [1, 6] and train a single
hidden layer network with 50 rectified linear units for all but the larger “Protein” and “Year” datasets
for which we train a 100 unit network. For the smaller datasets we train on a randomly subsampled
90% subset and evaluate on the remainder and repeat this process 20 times. For “Protein” we
perform 5 replications and for “Year” we evaluate on a single split.

Classification For the classification and gesture recognition experiments we used Adam with a
learning rate of 0.005 and 500 epochs. We used the parameter settings recommended in the original
papers for the competing methods.

MNIST We preprocessed the images in the MNIST digits dataset by dividing the pixel values by
126. We explored networks with varying widths and depths all employing rectified linear units.
We did not use a validation set to monitor validation performance or tune hyper-parameters. For
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Figure 4: Gesture recognition. Top: Example gestures from the NATOPS dataset. Second Row:
Left: Test error rates averaged over 5 runs achieved by competing methods. Right: Scatter plots
of solutions recovered by HS-BNN and competing methods for the 800-800 architecture on one of
the five splits. The bottom three rows provide density plots for the smallest node weight vectors
wkl found by HS-BNN and SM-BNN for the 400-400 (top row), 800-800 (middle row), 1200-
1200(bottom row) network. The plots are sorted by 2-norm of wkl, from left to right.

the larger classification experiments, we found that annealing in the entropy [36] and cross-entropy
terms of the ELBO as well as scaling the variances of the variational posterior of the weights by the
number of incoming nodes improved predictive performance.

NATOPS We also experimented with a gesture recognition dataset [37] that consists of 24 unique
aircraft handling signals performed by 20 different subjects, each for 20 repetitions. The task con-
sists of recognizing these gestures from kinematic, tracking and video data. However, we only use
kinematic and tracking data. A couple of example gestures are visualized in Figure 4. The dataset
contains 9600 gesture examples.

A 12-dimensional vector of body features (angular joint velocities for the right and left elbows and
wrists), as well as an 8 dimensional vector of hand features (probability values for hand shapes for
the left and right hands) collected by Song et al. [37] are provided as features for all frames of all
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Figure 5: TOP: Nonlinear one dimensional regression yn = x3n + εn, εn ∼ N (0, 9). The green dots
indicate training data and the red line visualizes the noise free cubic function while the black lines are the
predicted means. Left: BNN mean ±3 standard deviations. Center: HS-BNN mean ±3 standard deviations.
Right: Average predictive log likelihood for single layer networks with 10, 100 and 1000 units. HS-BNN’s
performance is more robust to increasing capacity. Right:Performance on UCI regression benchmarks.
BOTTOM: Non-centered parameterization is essential for robust inference. From left to right, A synthetic
nearly linear classification problem generated from sampling a 2-2-1 network, the two classes are in red and
black. Expected weights inferred with a Bayesian neural network with Gaussian priors on weights. Expected
weights recovered with a centered horseshoe parameterization. Non-centered horseshoe parameterization. The
boxplots display Eq[wkl].

videos in the dataset. We additionally used the 20 dimensional per-frame tracking features made
available in [37]. We constructed features to represent each gesture by first extracting frames by
sampling uniformly in time and then concatenating the per-frame features of the selected frames to
produce 600-dimensional feature vectors.

This is a much smaller dataset than MNIST and recent work [38] has demonstrated that a BNN with
Gaussian priors performs well on this task. Figure 4 compares the performance of HS-BNN with
competing methods. We train a two layer HS-BNN with each layer containing 400 units. The error
rates reported are a result of averaging over 5 random 75/25 splits of the dataset. Similar to MNIST,
HS-BNN significantly outperforms BNN and is competitive with VMG and SM-BNN. We also see
strong sparsity, just as in MNIST.

D.1 Experiments on simulated data

Robustness to model specification We begin with a one-dimensional non linear regression problem
shown in Figure 5. To explore the effect of additional modeling capacity on performance, we sample
twenty points uniformly at random in the interval [−4,+4] from the function yn = x3n + ε, ε ∼
N (0, 9) and train a single layer BNN with 50, 100 and 1000 units. We compare HS-BNN against
a BNN with Gaussian priors on weights, wij,l ∼ N (0, κ), κ ∼ C+(0, 5), training both for 1000
iterations. The performance of the BNN with Gaussian priors quickly deteriorates with increasing
capacity conditioning on the limited amount of training data. In contrast, HS-BNN by pruning
away additional capacity is more robust to model misspecification showing only a marginal drop in
predictive performance with increasing number of units.

Non-centered parameterization Next, we explore the benefits of the non-centered parameteri-
zation. We consider a simple two dimensional classification problem generated by sampling data
uniformly at random from [−1,+1] × [−1,+1] and using a 2-2-1 network, whose parameters are
known a-priori to generate the class labels. We train three Bayesian neural networks with a 15 unit
layer on this data, with Gaussian priors, with horseshoe priors but employing a centered parameter-
ization, and with the non-centered horseshoe prior. Each model is trained till convergence. We find
that all three models are able to easily fit the data and provide high predictive accuracy. However, the
structure learned by the three models are very different. In Figure 5 we visualize the posterior means
of weight vectors (E[wkl]) incident onto a unit. Unsurprisingly, the BNN with Gaussian priors does
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Figure 6: MNIST and NATOPS experiments. TOP: From left to right, Test error rates for different architectures
and methods. The right two plots compare the sparsity of the solutions found by HS-BNN, SM-BNN and BNN.
For the 1200-1200 network, we compare the expected node weight vectors inferred under the different models.
We sort the recovered weight vectors E[wkl] based on their 2-norm and compare them via scatter plots. Each
circle corresponds to one of the 1200 weight node vectors. Compared to competing methods a large number
of weight node vectors are zeroed out, while a small number escape un-shrunk for HS-BNN. The rightmost
plot shows the density of the unit with the lowest norm from the the three architectures. Middle: E[wkl] for
the first layer trained on MNIST. The left and right columns visualize the ten units with the largest and the
smallest norms. BOTTOM: The first three columns contrast test accuracy against training time for the tied and
full approximations, averaged over 5 random splits, and run for 500 epochs each. On the right, we compare
against other competing methods.

not exhibit sparsity. In contrast, models employing the horseshoe prior are able to prune units away
by setting all incident weights to tiny values. It is interesting to note that even for this highly stylized
example the centered parameterization struggles to recover the true structure of the underlying net-
work. The non-centered parameterization however does significantly better and prunes away all but
two units. Further experiments provided in the supplement demonstrate the same effect for wider
100 unit networks. The non-centered parameterized model is again able to recover the two active
units.

D.2 Classification and Gesture recognition

We benchmark classification performance on the MNIST dataset and on a gesture recognition dataset
(NATOPS) [37] that consists of 24 unique gestures from 20 subjects, with each subject performing
20 repetitions of each gesture. Large inter-subject variance in gestures, as well as the relatively small
number of gestures, make this a challenging problem [38]. We compare HS-BNN with full and tied
approximate posteriors (HS-BNN tied) against the variational matrix Gaussian (VMG) [6], a BNN
with a two-component scale mixture (SM-BNN) prior on weights proposed in [3] and a BNN with
a Gaussian prior (BNN) on weights. These approaches constitute the state-of-the-art in variational
learning for BNNs.

MNIST Figure 6 summarizes our findings. We showcase results for three architectures with
two hidden layers each containing 400, 800 and 1200 rectified linear hidden units. We clearly
see the sparsity inducting effects of the horseshoe prior. Recall that under the horseshoe prior,
wkl ∼ N (0, τ2klυ

2
l I). As the scales τklυl tend to zero the corresponding units (and all incident
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weights) are pruned away. SM-BNN also encourages sparsity, but on weights not nodes. Further,
the horseshoe prior with its thicker tails and taller spike at origin encourages stronger sparsity. To
see this we compared the 2-norms of the inferred expected weight node vectors E[wkl] found by
SM-BNN and HS-BNN (Figure 6). For HS-BNN the inferred scales are tiny for most units, with a
few notable outliers that escape un-shrunk. This causes the corresponding weight vectors to be zero
for the majority of units, suggesting that the model is able to effectively “turn off” extra capacity. In
contrast, the weight node vectors recovered by SM-BNN (and BNN) are less tightly concentrated at
zero. We also plot the density of E[wkl] with the smallest norm in each of the three architectures.
Note that with increasing architecture size (modeling capacity) the density peaks more strongly at
zero, suggesting that the model is more confident in pruning the unit and not use the extra capac-
ity. To further explore the implications of unit versus weight sparsity, we visualize E[wkl] learned
by SM-BNN and HS-BNN in Figure 6. Weight sparsity in SM-BNN encourages fundamentally
different filters that pick up edges at different orientations. In contrast, HS-BNN’s node sparsity
encourages filters that correspond to digits or superpositions of digits and may lead to more inter-
pretable networks. Stronger sparsity afforded by the horseshoe is again evident when visualizing
filters with the lowest norms. HS-BNN filters are nearly all black when scaled with respect to the
SM-BNN filters. Pruning away entire units allows for significant test-time speedups relying only
on standard dense matrix operations. Additional results exploring unit sparsity are available in the
supplement.

Next, on the more challenging NATOPS dataset, we first explore the benefits afforded by the tied
approximation. We performed experiments on five random replicates each using 75% of the data for
training. Figure 6 contrasts the held-out test performance of the full and tied approximations against
wall-clock time2. The tied approximation converges significantly faster nearly halving the training
time without adversely affecting predictive performance. Despite the strong sparsity constraints of
HS-BNN and HS-BNN tied, we find that across architectures, our performance to be significantly
better than BNN, marginally better than SM-BNN, and comparable to VMG.

Regression We also benchmark performance of our model on a wide variety of regression datasets
from the UCI repository. Here, we only benchmark against VMG, which has previously been shown
to outperform alternatives [6]. Figure 5 summarizes our predictive results. Similar to classification
and gesture recognition experiments, despite being biased towards smaller models HS-BNN remains
competitive both in terms of root mean squared error (RMSE) as well as predictive log likelihoods.

E Additional Experiments

E.1 Simulated Data

Here we provide an additional experiment with the data setup in Section 6.2. We use the same
linearly separable data, but train larger networks with 100 units each. Figure 7 shows the inferred
weights under the different models. Observe that the non-centered HS-BNN is again able to prune
away extra capacity and recover two active nodes.

2Experiments were performed on a 2.5 GHz Intel Core i7, with 16GB of RAM
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Figure 7: Learned sparsity on a synthetic classification problem. We use a single hidden layer
network with 100 units. Left: Bayesian neural network with Gaussian. Center: Horseshoe, centered
parameterization. Right: Horseshoe, non-centered parameterization.
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