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Abstract

We address the problem of sparse spike deconvolution from noisy measurements
within a Bayesian paradigm that incorporates sparsity promoting priors about the
ground truth. The optimization problem arising out of this formulation warrants
an iterative solution, which we accomplish using a deep neural network (DNN).
The architecture of the DNN is such that the weights and biases in each layer
are fixed and determined by the blur matrix and the noisy measurements, and
the sparsity promoting prior determines the activation function in each layer. In
scenarios where the priors are not available exactly, but adequate training data is
available, the formulation can be adapted to learn the priors by parameterizing
the activation function using a linear expansion of threshold (LET) functions. As
a proof of concept, we demonstrate successful spike deconvolution on synthetic
dataset and compare our results with the fast iterative shrinkage-thresholding
algorithm (FISTA). We also show an application of the proposed method for
performing image reconstruction in super-resolution localization microscopy.

1 Introduction

Sparse spike deconvolution is the problem of determining the point-source excitation X € RM*N
from noisy, blurred measurements Y € RM>*¥ modeled as

Y=H*X+W, (1)

where * represents 2-D convolution, H € RM* is the point-spread function (PSF), and W €
RM>*N g the additive white Gaussian noise (AWGN). This model is frequently encountered in
localization microscopy [[1-3]], astronomical imaging [4]], deflectometry [5]], etc. Typically, H is non-
invertible, which makes the linear inverse problem in (E]) ill-posed. However, one could circumvent
this problem by incorporating priors on X, and reformulating the reconstruction within a Bayesian
framework.

1.1 A Maximum A posteriori (MAP) Formulation

The point-source excitation X is assumed to contain i.i.d. entries and following the distribution g(X).
Typically, g promotes sparsity in X. Further, the PSF is assumed to be separable, that is, H = h,h/,
where h,. and h, are the blur kernels along the x and y axes, respectively. Hence, the 2-D convolution
operation in (T) can be expressed as H * X = H.XH,", where H, and H,. are Toeplitz matrices
constructed from h, and h,., respectively [6]. Denoting the likelihood of the observations by f, we
consider the maximum a posteriori (MAP) estimate:

Xmap = arg max F(Y/X; H)g(X),
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which turns out to be a solution to an optimization problem of the form:
.1 2
Xyap = arg min o ||[Y = HXH, || + A (X), )

where G(X) = log g(X) acts as the regularizer, A encapsulates the parameters of the distribution,
and the subscript F denotes the Frobenius norm.

2 A Deep Deconvolutional Neural Network

Consider an affine approximation to f(X) = HY ~H.XHS Hi in @) at X*, and the following
update rule:

X :argn%én f (X +Tr (X—Xe)TVf(XZ)—f— HX—XZHE—F)\Q (X), 3)

1
2n
where HX - XZH2 serves as the proximal term. For separable G(X), employing the definitions of
proximal operators [7}8]], the update is expressed equivalently as

X4 =P, (X —nVf (X)), 4)

where P, is the proximal operator corresponding to G and v = An. For the case

M N
G(X) =X £ > X,

i=1 j=1
the proximal operator turns out to be the element-wise soft-thresholding (ST) function [9]:
P, (Xi;) = sgn(X;;) max {|X;;| — v,0},

where sgn(-) denotes the signum function. The resulting update corresponds to the standard iterative
shrinkage and thresholding algorithm (ISTA) [|10]. Using the gradient expression

Vf (X) = Hc—r (HCXHT - Y) HrTv

@) can be expressed in the following form
X —p, (xf —pH, H.X'HH,  + C) : (5)

where C = nH, YH, ". Gregor and LeCun encountered similar update equations in the context
of sparse coding and interpreted the update steps as one layer of a feedforward DNN [[11]]. Inspired
by a similar connection in the deconvolution problem at hand, we interpret (3)) as the feedforward
computation through a neural network (NN) with weight matrix determined by H, and H,., and
bias C shared across layers. The input to the NN is the initialization X°. The proximal operator
P, (-) effectively plays the role of the nonlinear activation function ¢ of the neurons in layer £. An
L-stage iterative algorithm now becomes equivalent to an L-layer DNN. This connection becomes
particularly effective when the priors are not explicitly available but adequate training data is available
from which the priors can be learnt. Effectively, this also corresponds to learning the appropriate
regularizer, which renders the DNN capable of performing deconvolution. We refer to this network
as the Bayesian Deep Deconvolutional Neural Network (BD?N?).

2.1 Learning Priors

We parameterize the activation function v as a linear combination of K derivatives of a Gaussian
(DoG) and the linear function [[12]] as

K
Y(u) = ch¢k(u)vu ER,
k=1
where )
or(u) = u exp (_(k‘;le)u) )



The activation function, although nonlinear in w, is linear in the coefficients {cg }, which can be learnt
using a training dataset containing blurred images and their ground-truth target pairs. The primary
motivation for using a DoG-based parameterization is its high success over the soft-threshold in
several 2-D and 3-D deconvolution [12] and denoising problems [13]. This parameterization actually
leads to a wide variety of sparsity inducing regularizers, beyond the standard ¢; norm — this will be
reported separately in a journal version of this paper. ISTA has a convergence rate of O (%) which

can be improved to O (Z%) by incorporating a momentum factor [|14}/15]], leading to the fast ISTA
(FISTA) algorithm. It can be shown that FISTA has a deep residual network type architecture [|16].

2.2 Learning Optimal Activation of BD°N?

The training dataset D consists of N examples {(Y,, X,) éV:l, where Y, = H. X, H + ¢ 4 The
random noise vectors &, are assumed to be independent and identically distributed. Let ct € RE,

¢ =1: L, be the coefficients of the LET activation in layer ¢. For the q‘h example in the dataset, the
prediction Xf of the L™ layer is a function of the corresponding measurement vector Y, and the

. T 21T T 1T’ . .
LET coefficient super-vector ¢ = [[c ] | [c ] | [c ] [c ] ] . The optimal set of activation

parameters c* is obtained by minimizing the squared estimation error over all training examples:
1N
L 2
J(c) = 5 Z HXq (Ygq,¢) — X3
q=1

The optimization requires knowledge of the gradient of J(c) with respect to c. In general, the
optimization of .J(c) using vanilla gradient-descent (GD) tends to diverge, unless a very small step
size is chosen. We overcome this hurdle by noting that the Hessian need not be computed explicitly.
All that is needed is the Hessian-vector product to train the parameters of the network. This is
precisely what the Hessian-free optimization (HFO) technique [[17]] guarantees, which is therefore
employed in our training procedure. In the i™ epoch of HFO [[17], the search direction &, is obtained
by minimizing a second-order Taylor-series approximation ./ (c) to the actual cost .J(c) at the i
iterate c;:

N 1
J(ci+8c)=J(c;) + 00 gi+ 562&»607

where g; = VJ(c)|._,. Hi = V2J(c) |C:c‘ , and J. is the search direction to be chosen optimally
at every iteration by minimizing a regularized quadratic approximation:

o = argr%in J (ci + 8c) + 83

2.3 Experimental Validation on Synthetic Data

In order to evaluate the performance of our network architecture, we tested our BD?N? technique on
synthetic datasets. We created three sets of 50 synthetic images of size 128 x 128. The three sets
were divided into images containing 15, 25, and 35 randomly generated points, respectively. Each
image is then convolved with a Gaussian PSF of size 3 x 3. Further, to each set of the 50 images, we
added AWGN with standard deviation of 3, 5, and 7. In each set, we took 10 images for training and
retained 40 for testing. Finally, the reconstruction peak signal-to-noise ratio (PSNR) was calculated
by averaging over the PSNR outputs of the test images. We observe from Fig.|1| the BD?N? approach
is able to reconstruct a deblurred image from the noisy and blurred one. The reconstructed image is
of high quality and resembles the ground-truth image very closely. The PSNR gain over FISTA was
computed to be about 4 dB, which is significant.

3 Application to Super-Resolution Localization Microscopy

We now present experimental results related to localization of point-sources in stochastic optical
reconstruction microscopic (STORM) [18]] imaging of Fibronectin samples. STORM is a super-
resolution imaging technique [[19]], which achieves a resolution of the order of 10 nm, which is below
the diffraction limit. In STORM imaging, one acquires a sequence of images where each image
can be modeled as in (1)) and then localizes the point-sources [20L21]] using a Gaussian peak-fitting



(a) Ground-truth image

(b) Noisy image; PSNR = —1.67 dB

(c) FISTA output; PSNR = 13.94 dB (d) BD2N? output; PSNR = 17.81 dB

Figure 1: Deconvolution results on a synthetic image comprising 15 point sources: (a) Ground-truth image;
(b) Noisy image; (c) FISTA output; and (d) BD2N? output.

technique. We employ the proposed BD*N? based deconvolution technique to perform localization.
The dataset consists of 9994 low-resolution frames of size 129x 129. The PSF is a Gaussian kernel
with opsg = 150 nm. For training the BD?N?, 50 frames were randomly chosen from the dataset,
and the remaining were used for testing. Each localized point denoted as (Z¢, §,) is further associated
with a Gaussian uncertainty blob as determined by Thompson’s rule [22f]. The final image is rendered
by creating a super-resolved grid of size 1290x 1290 and placing a Gaussian uncertainty blob at
[round(10&,), round(10g,)]. The reconstructed images are shown in Fig. |2l We observe that the
image reconstructed by the BD?N? is on par with the benchmark Gaussian peak detection and fitting
technique.

4 Conclusions

We considered the problem of sparse spike deconvolution in the presence of noise within a Bayesian
formulation. We considered an iterative algorithm to solve the deconvolution problem and established
a one-to-one equivalence with a deep neural network architecture. Upon training the network to
learn the activation function, it becomes capable of learning priors and consequently the optimal
regularizers. Deconvolution of synthetic datasets showed that the BD?N? is capable of giving high



(a) Gaussian peak-fitting reconstruction

(b) BD?N? reconstruction

Figure 2: (Color online) A comparison of super-resolved Fibronectin images reconstructed by the
BD?N? technique vis-a-vis the de facto standard Gaussian peak-fitting algorithm [20,[21]).

accuracy reconstruction, about 4 dB higher in PSNR compared with FISTA. We also demonstrated
successful application of the BD®N? approach for performing deconvolution of image stacks acquired
in a super-resolution localization microscopy setup. The BD?N? approach resulted in a high quality
of image reconstruction competitive with the de facto standard.
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