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Abstract

This work explores maximum likelihood optimization of neural networks through
hypernetworks. A hypernetwork initializes the weights of another network, which
in turn can be employed for typical functional tasks such as regression and classifi-
cation. We optimize hypernetworks to directly maximize the conditional likelihood
of target variables given input. Using this approach we obtain competitive empirical
results on regression and classification benchmarks.

1 Introduction

Implicit distribution (ID) representation has lately been a subject of much interest. IDs govern
variables that result from linear or non-linear transformations applied to another set of (standard)
random variates. Through successive transformations, IDs can be equipped with enough capacity to
represent functions of arbitrary complexity (i.e., high-dimensionality, multimodality, etc.). This has
seen IDs become mainstream in approximate probabilistic inference in deep learning, where they have
been extensively applied to approximate intractable posterior distributions over latent variables and
model parameters conditioned on data [9} [19} 12} 25| [18] [16} 23} |6, among many others]. Although
the probability density function of an ID may not be accessible (e.g., due to non-invertible mappings),
the reparameterization trick [9] still allows for an efficient and unbiased means for sampling it. This
makes IDs amenable to (gradient-based) stochastic optimization regimes.

In this work we employ IDs as hypernetworks. The idea behind a hypernetwork (Figure [I)) is
to have a neural network that outputs the weights of another main neural network. The main
network is then applied for standard tasks such as regression or classification. We optimize the
parameters of the hypernetwork using stochastic gradient descent (SGD e.g. [7]) to maximize
the (marginalized) conditional likelihood of targets given input. In empirical analysis on various
regression and classification benchmarks, we find our approach to be in general better than standard
maximum likelihood learning, while it also performs competitively with respect to a number of
approximate Bayesian deep learning methodologies.

2 Related Work

Our optimization framework is not fully Bayesian; however instead of maintaining point parameter
estimates as in standard maximum likelihood optimization of neural networks, our approach optimizes
an ID that governs the parameters of a neural network. In contrast to Bayesian Neural Networks
(BNNs) [17, 15) 1264 131 15, 11, among others], where the target is to approximate the posterior
distribution of neural network parameters (e.g., using variational inference [3]]), we deploy and tune
the parameter distribution while directly optimizing for the objective of the main neural network.
Hence our approach is much akin to gradient-based evolutionary optimization [22]].
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Figure 1: Schematic of a hypernetwork that takes a noise variable € and outputs the weights of the
main network.

2.1 Hypernetworks

This work uses the hypernetworks approach, which has its roots in this paper [20]. The term itself
was introduced in the paper [4] where the complete model was trained via backpropagation, like in
this paper, and used efficiently compressed weights to reduce the total size of the network.

2.2 Bayesian Neural Networks

Studied since the mid 90’s [[17] [15] BNNs can be classified into two main methods, either using
MCMC [26] or learning an approximate posterior using stochastic variational inference (VI) [3l],
expectation propagation [5] or c-divergence [11]. In the VI setting one can interpret dropout [2] as
a VI method allowing cheap samples from ¢(#) but resulting in a unimodal approximate posterior.
Bayes by Backprop [1] can also be viewed as a simple Bayesian hypernet, where the hypernetwork
only performs element wise shift and scale of the noise. To solve the issue of scaling [13]] propose
a hypernet that generates scaling factors on the means of a factorial Gaussian distribution allowing
for a highly flexible approximate posterior, but requiring an auxiliary inference network for the
entropy term of the variational lower bound. Finally, [10] is closely related to this work, where a
hypernetwork learns to transform a noise distribution to a distribution of weights of a target network,
and is trained via VL.

3 Method

Given training data D containing (X,Y) = {z(™) y(™}N_, 'we consider the task of maximizing the
marginal conditional likelihood of targets Y given X:

1
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where the approximation allows us to estimate the intractable integral by Monte Carlo sampling. While
the logarithm of p(y|z, 8) in (1)) can be taken to be proportional to a loss function I(y, f(z;w)) :=||
y — f(x; w) || defined between the ground-truth y and the output of a deep neural network f(z;w),
p(f) (with § = w) can be chosen to have any parametric form, such as fully factorized Gaussian
distributions across each dimension of the parameter vector w. Such non-structured distributions
would however be undesired for not allowing dependencies among dimensions of w. Also from a
sampling point of view it would be inefficient, in particular in high-dimensional cases. We therefore
define an implicit distribution g(w; ©) such that it has a capacity to model arbitrary dependency
structures among w, while by means of the reparameterization trick [9], it also allows for cheap
sampling w ~ ¢(w; ©) by constructing w as:

w=yg(0); €~ple), (2)

where g(e; ©) is a hypernetwork that gets activated by a latent noise variable e drawn from a standard
distribution p(e), such as a Gaussian or uniform distribution. Given (2 and the main network f(z;w),
we can write down the following function as an approximation to the logarithm of (T):
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Since we draw one parameter sample per data point, we have dropped the summation over .S in (3).
Given D we can optimize (3) w.r.t. © by applying gradient-based optimization schemes such as SGD.
To predict y, given an input z, we have:

Ys =/f(fc*;W)q(W;@)dW ~ %Zf(w*;ws); ws ~ q(w; ©). )

The objective function (3)) is a stochastic relaxation of standard maximum likelihood optimization. It
encourages the hypernetwork to mainly reproduce outputs for which the conditional likelihood was
found to be maximal. This implies that ¢(w; ©) may eventually either converge to a delta peak at a
(local) optimum or have its mass distributed across equally (sub)optimal regions, which in principle
can coincide with the solution found by plain maximum likelihood (i.e., standard gradient descent
techniques). In practice we however observe that our approach finds solutions that are generally
better than standard gradient descent and are on par with more sophisticated Bayesian deep learning
methodologies (see Sec. ] for more details). This may be due to the fact that we start with a large
population of solutions that shrinks down gradually as ¢(w; ©) continues to concentrate its mass to
the region(s) of most promising solutions seen so far. This can be seen as akin to gradient-based
efficient evolution strategies [22].

4 Experiments

We validate our approach in accordance with relevant literature on standard regression tasks on UCI
datasets as well as MNIST classification. We use ReLLU non-linearity in all our experiments for
hidden layers in both hyper and main networks. We use dropout probability of 0.5 for the hidden
units of hypernetworks during training. We use a softplus layer to scale (initially 1.0) the input to
the hypernetwork in (2). For both our approach and standard SGD results reported below, we add
Gaussian noise to input z in (3), with its scale (initially 0.5) tuned during end to end training as the
output of a softplus unit.

For the regression experiments we follow the process as in [S]]: we randomly keep 10% of the data for
testing and the rest for training. Following the earlier works [5, [14]], the main network architecture
consists of a single hidden layer with 50 units (or 100 for the Protein and Year). For datasets with
more than 5,000 data points (Kin8nm, Naval, Power, Protein and Year) we switch from mini-batches
of size 1 to 512 (not fine-tuned). We run a total of 2000 epochs per repetition. As this number is not
fine-tuned, it could cause overfitting in smaller datasets like Boston. Early stopping in such cases
might improve the results.

We compare the results of our approach with the results of other state of the art methods, as well as
plain SGD trained on the same target network f(x;w) without employing a hypernetwork. For each
task we output the mean RMSE over the last 20 epochs and then repeat the task 20 times to report
the mean of these RMSEs and their standard errors in Table [Tl for our method and SGD. It can be
seen that in most cases the results are competitive, and often exceed the state of the art. In Figure E]
we further plot how the distribution over weights as represented by the hypernetwork evolves over
training epochs for three (out of 20) independent repetitions of three of the regression benchmarks.
While we observe a consistent diffusion behavior across multiple repetitions on a given dataset, we
see that for different datasets the diffusion trajectories leading to convergence (to a delta peak) can
vary notably. In the plots we also overlay the evolution of the average test RMSE for a comparison.

For the classification task, we used MNIST to train with varying numbers of layers and hidden units
per layer, as in Table [2] for 2,000 epochs. We use a mini-batch size of 256. The hypernetwork for the
2x400 and 2x 800 cases consist of 2 hidden layers of size 100 and 50 and for the 3x 150 we have 2
hidden layers of 100 and 20. The error rate reported is calculated by taking the means of test errors
from the last 20 epochs for our method and plain SGD.

5 Conclusion

We have presented a simple stochastic optimization approach for deep neural networks. The method
employs implicit distributions as hypernetworks to model arbitrary dependencies among parameters
of the main network. Despite being not fully Bayesian, our approach aims to model a distribution



Dataset N d VI PBP Dropout VMG SGD Our

Boston 506 13 4324029 3.01£0.18 2.97+0.85 2.70+0.13 3.73+0.67 3.72+1.05
Concrete 1,030 8 7.194£0.12 5.67+0.09 5.23+0.53 4.894+0.12 5.29 £0.87 4.74 £ 0.64
Energy 768 8 2.65+0.08 1.80+0.05 1.66+0.19 0.54+0.02 0.95+0.13 0.87+0.10
Kin8nm 8,192 8 0.10£0.00 0.10£0.00 0.10+0.00 0.08+0.00 0.08 +0.00 0.08 £ 0.00
Naval 11,934 16 0.01+0.00 0.01£0.00 0.01£0.00  0.00+0.00 0.00 & 0.00 0.00 = 0.00
Power Plant 9,568 4 4.33+0.04 4.12+0.03 4.02+£0.18 4.04+£0.04 4.06 £0.25 4.02+0.18
Protein 45,730 9  4.84+0.03 4.73£0.01 4.364+0.04 4.13+£0.02 4.37+0.03 4.65=+0.19
Wine 1,599 11 0.65£0.01 0.64+0.01 0.62+0.04 0.63£0.01 0.80+£0.05 0.62 £ 0.04
Yacht 308 6 6.89+0.67 1.02+0.05 1.11£0.38 0.71£0.05 0.77£0.25 0.57 +£0.21

Year 515,345 90 9.03£NA  8.87NA  884+NA  8.78+NA 8.74 +0.03 8.74 £ 0.03
Table 1: Average test set RMSE and standard errors for the regression datasets for VI method of [3]],
PBP method of [5], Dropout uncertainty of 2], VMG of [[14], standard SGD and our method.

Arch. Max. Likel. DropConnect Bayes B. SM  Var. Dropout VMG SGD  Our

2x400 - - 1.36 - 1.15 143 1.26
2x800 1.60 1.20 1.34 - - 1.64 1.37
3x150 - - - ~ 142 .18 1.71 149
3x750 — — ~ 1.09 1.05 — —

Table 2: Test errors for the MNIST dataset for Max. Likel. [21], DropConnect [24], Bayes by B. with
scale mixture [[1]], Var. Dropout [8]], VMG [14], mean for plain SGD and mean for our method.

over the parameters of a neural network, as opposed to maintaining point weight estimates as in
standard maximum likelihood optimization of neural networks. In general we empirically outperform
standard gradient descent optimization and demonstrate on par performance in a broader comparison
with state of the art Bayesian methodologies on regression and classification tasks.

In the future we would like to focus on the scalability of our approach (e.g., through layer cou-
pling [10]) as well as on a fully Bayesian extension of our optimization procedure.



Kin8nm

0.30
0.030 025
0.20
0.015
0.15
0.10
0.000
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Concrete
003 10
9
T w
® [72]
@ 002
- 8 =
S o
K- -
[ 72
[
H -
: 0.01 ]
o s 9
> >
< <
5
0.00
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Protein
— Avg. weight std [ >8
s Avg. RMSE
0.045 56
54
0.030 52
5.0
0.015 4.8
4.6
0.000 44
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Epochs

Figure 2: Each row plots three random repetitions of the regression task over a benchmark. The blue
curves are the means of the standard deviations computed across each dimension of the hypernetwork
output. The values are computed at every epoch from 10 samples of the hypernetwork output (i.e.,
10 initializations of the main network). The gray areas cover 3 standard deviations around the mean
values. The red curves are the average test set RMSE computed per epoch as for our results in Table[T]
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