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Abstract

We propose a new Deep Gaussian Process (DGP) model, constructed from a
hierarchy of non-stationary processes. In the standard DGP formulation, the output
of one GP is the input to the next in the hierarchy. This construction can lead to
undesirable properties such as exponential multimodality of the posterior, non-local
correlations, and degeneracy. Instead, we use a non-stationary kernel for each layer,
and use the Gaussian process of the previous layer to model the lengthscale. We
apply recently proposed doubly stochastic variational inference, which scales to
any size of data and retains the conditional dependencies of the exact model.

1 Introduction

Deep Gaussian processes (DGP) [Damianou and Lawrence 2013] are multilayer generalizations of
Gaussian process (GP) models. One way to chain GPs together is to use the outputs of each layer as
the inputs to the next. This has an appealing parallel with the construction of feed-forward neural
networks, but leads to undesirable properties. One problem with the direct function composition
approach is that the GP mapping for typical kernels is highly non-injective. The activation functions
used in neural network models are typically monotonic, but a GP non-linearity can never be monotonic
as the marginals of a monotonic function cannot be Gaussian. As many inputs are mapped to the
same outputs, each layer reduces the degrees of freedom of the space, resulting in highly degenerate
covariances. The inclusion of a identity mean function [Salimbeni and Deisenroth 2017] or forward
propagating the inputs [Duvenaud et al. 2014] mitigates the problem to an extent, but the pathological
behaviour is still attainable under certain hyperparameter settings. See Fig. 1 for a demonstration of
this effect.

We propose an alternative construction that completely avoids this pathological behaviour, based
on non-stationary covariance functions. A non-stationary covariance function can be constructed
from any stationary covariance using the approach of Paciorek and Schervish [2004]. Each point
is associated with a local lengthscale, with the covariance between two points dependent on both
the input locations and the lengthscales at each point. We use another GP to model the (log of) the
lengthscale values. The special case of a single two dimensional hidden layer has been extensively
studied in the geostatistics community using discretized representations [Paciorek 2003, Damian
et al. 2001, Fuglstad et al. 2015, Roininen et al. 2016]. We extend these approaches to multi-layered
hierarchies with high dimensional latent layers.

We use the approach of Salimbeni and Deisenroth [2017] for inference, employing stochastic sparse
variational inference with the reparameterization trick Rezende et al. [2014], Kingma and Welling
[2013] for gradients. Our sparse inference decouples the function values at each layer conditioned
on a reduced set of inducing points Hensman et al. [2015]. A subtlety we need to consider in the
non-stationary model is how to model the lengthscale at the inducing points (in the composition DGP
we only need the inputs, which are variational parameters). An important property of the sparse
approximation is that the input locations are variational parameters and free to take any values. To
achieve inference in the DGP model it is not necessary to couple the inducing points to the outputs of
the previous layer, greatly simplifying inference without weakening the quality of the approximation.
In the DNSGP we can use the same idea and choose to model the inducing input lengthscales as
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variational parameters. This is valid as we are free to define the model in this way without changing
the distribution over the data. The key point is that the GPs themselves are independent a priori: it is
only the evaluation locations which couple the layers.
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Figure 1: Three layer prior samples for the DGP (left) and DNSGP (right). A single sample is
propagated through the layers, top to bottom. Further samples to give a more representative idea of
the prior are shown faintly behind. Note that in all but the first layer the faint samples correspond to
different covariances (they are independent samples from the whole model). The DGP covariance
has characteristic ‘loops’ at the second layer due to the non-injectivity of the first layer mapping.
Subsequent layers have increasingly degenerate covariances. The DNSGP does not suffer from this
problem and creates richer covariances without pathologically collapse

2 Model

While composing GPs directly in the manner of the DGP is a recent idea, models involving more than
one GP in a hierarchy have been around for a long time. In particular, the Non-Stationary Gaussian
Process (NSGP) was developed by Paciorek [2003], extending ideas from Sampson and Guttorp
[1992]. The key idea is that any stationary kernel k(a,b) = φ(r(a,b)), where φ is a scalar function
and r2(a,b) =

∑D
d=1(ad − bd)

2l−2
d , can be extended to a non-stationary version via

kNS(a,b) = q(a,b)φ(s(a,b)) , (1)

where

s(a,b) =
∑D

d=1
(ad − bd)

2
(
ld(a)

2 + ld(b)
2
)−1

, (2)

i.e. the Euclidean distance with constant lengthscale replaced by a input dependent term, and

q(a,b) =
∏D

d=1

√
2ld(a)ld(b) (ld(a)2 + ld(b)2)

−1
, (3)

where ld(·) is a positive scalar function. We model ld with a GP passed through a monotonic positive
function, e.g. softplus. We need a constant mean function for each component to set the a priori
average lengthscale for each layer. For inference we follow the approach of Salimbeni and Deisenroth
[2017]. If we use variational parameters for the inducing point lengthscales we can use the approach
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without any changes to the code other than the implementation of the non-stationary kernel. The only
difference we need is to change the mean functions: in Salimbeni and Deisenroth [2017] the mean
functions at all but the final layers are the identity. Here we can use the zero mean function as the GP
is modelling the lengthscale. We omit all the details and refer the reader to Salimbeni and Deisenroth
[2017].

3 Results

We apply the DNSGP to 8 UCI regression datasets. The results from 5 fold cross validation are
shown in Fig 2. On three of the datasets (boston, wine-red and naval) all models perform similarly.
As discussed in Salimbeni and Deisenroth [2017], this is because these datasets are well-modelled
by a single layer GP and the deep models recover the single layer models. This is in contrast to
non-Bayesian models which typically suffer from overfitting without careful regularization. On the
remaining 5 dataset the deep models significantly outperform the single layer models. On the power
and concrete datasets it seems that DNSGP is a superior model, albeit only slightly.
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Figure 2: Regression test RMSE results with 5 fold cross validation. Lower (to the left) is better).
The DNSGP outperforms the DGP on the power and concrete datasets, and performs similarly or
slightly worse on protien and kin8nm, but both substantially outperform the single layer model. On
wine, naval and boston the models all perform similarly

4 Discussion

Unlike the direct input warping approach of the DGP, the DNSGP does not require a ‘fix’ to overcome
pathological behaviour. The DNSGP provides a more interpretable way to combine Gaussian
processes in a multi-layer hierarchy. On preliminary experiments, we have shown that the DNSGP
GP can perform at least as well as the DGP on regression tasks. There are some settings where the
DGP prior may be more appropriate, for example when data has periodicities that are not captured by
the kernel. In this setting the DGP can warp the space to create periodic covariances at the final layer.
In other situations, however, we suggest that the DNSGP prior might be more appropriate as it more
closely preserves the properties of the final layer GP.

A central challenge faced by the Bayesian deep learning community is building rich priors that both
represent reasonable prior beliefs and admit effective inference. We suggest that the DNSGP fulfils
both these criteria. The DNSGP is naturally suited to spatial data where smoothness can be assumed
but discontinuities might exist at locations that are not known a priori. Such data are difficult to
model with a single layer GP. The DGP can model the discontinuities, but introduces the potential for
non-local correlations which might not be an appropriate. The DNSGP in contrast can model exactly
this sort of data. In future work we will apply the DNSGP to spatial situations such as demographic
data.
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