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1 Introduction

Representation learning is useful for a wide range of applications (Bengio et al. (2013)). Learned
good representations can be used as inputs for supervised machine learning systems (Salakhutdinov
(2009)) such as speech recognition (Seide et al. (2011)), object recognition (Krizhevsky et al. (2012)),
and natural language processing(Bengio (2008)). A recent approach to representation learning has
been the Variational Auto-Encoder (VAE)(Kingma and Welling (2013); Rezende et al. (2014)). This
is an efficient probabilistic deep learning method that has gained a lot of popularity recently. It is
widely applied due to its ease of use and promising results (Doersch (2016)).

The VAE is comprised of a generative process pθ(x|z) and an approximate recognition or inference
process qφ(z|x). Both these processes can be parametrized with neural networks allowing joint
optimization using common techniques such as stochastic gradient descent. The quality of the
inference and generative process are dependent on the accuracy of the inference network. There
have been several proposals on how to improve the inference network of the VAE. While these
improvements draw comparisons to the original VAE work, a thorough comparison between the
different improvements is lacking in the community.

We present a quantitative evaluation between the following models: Importance Weighted Auto-
Encoder (IWAE) (Burda et al. (2015)), Auxiliary Deep Generative Model (ADGM)(Maaløe et al.
(2016)), Skip Deep Generative Model (SDGM) (Maaløe et al. (2016)), Householder Flow Model
(Tomczak and Welling (2016)), and Inverse Autoregressive Flow (IAF) (Kingma et al. (2016)) model.

The common metric used in comparing deep generative models is the variational lower bound (ELBO)
as shown in Equation 1 below:

Eqφ [logp(x, z)− logqφ(z|x)] (1)

We report on this metric but additionally investigate the modeling time taken by these various
approaches as this is an important practical consideration. For diversity, we examine the performance
of these models on three datasets of varying complexity in our original work(D’Cruz et al. (2017)):
MSRC-12 (Pose) (Fothergill et al. (2012)), MNIST (LeCun (1998)), and celebA (Liu et al. (2015)).
In this work, we examine some of the results on the Pose dataset.



Table 1: Pose data: average ELBO over the test set (175,638 samples). A single Monte Carlo sample
was used for the expectation unless otherwise stated.

Model ELBO Mean

IAF (8 transformations) 146.21
SDGM 142.96

IAF (4 transformation) 136.24
IAF (3 transformation) 135.82

Householder (10 transformations) 133.03
IAF (2 transformation) 132.08
IWAE (2 MC samples) 130.81

ADGM 127.08
VAE (1 MC sample) 126.03

IWAE (1 MC sample) 125.80
IAF (1 transformation) 125.78
IWAE (5 MC samples) 122.91
VAE (2 MC samples) 122.34

Householder (1 transformation) 119.85
VAE (5 MC samples) 119.34

Table 2: Pose data: average times (seconds) over the training set (351,275 samples). We also report
the standard deviation in brackets.

Model Encoding Decoding Update

IAF (8 transformations) 0.0041 (± 0.00140) 0.0277 (± 0.00203) 0.1397 (± 0.00293)
IAF (4 transformations) 0.0041 (± 0.00183) 0.0169 (± 0.00154) 0.1326 (± 0.00275)
IAF (3 transformations) 0.0028 (± 0.00913) 0.0128 (± 0.01430) 0.0117 (± 0.01518)
IAF (2 transformations) 0.0044 (± 0.00654) 0.0107 (± 0.00801) 0.0123 (± 0.01152)
IAF (1 transformation) 0.0040 (± 0.00171) 0.0077 (± 0.00068) 0.0102 (± 0.00152)

Householder (10 transformations) 0.0046 (± 0.00498) 0.0229 (± 0.01109) 0.0220 (± 0.00825)
Householder (1 transformation) 0.0041 (± 0.00126) 0.0073 (± 0.01774) 0.0110 (± 0.00132)

IWAE (5 MC samples) 0.0037 (± 0.00138) 0.0033 (± 0.00026) 0.0325 (± 0.00278)
IWAE (2 MC samples) 0.0037 (± 0.00142) 0.0033 (± 0.00028) 0.0154 (± 0.00150)
IWAE (1 MC sample) 0.0037 (± 0.00129) 0.0034 (± 0.00018) 0.0087 (± 0.00074)
VAE (5 MC samples) 0.0036 (± 0.00188) 0.0034 (± 0.00047) 0.0245 (± 0.00350)
VAE (2 MC samples) 0.0038 (± 0.00134) 0.0033 (± 0.00187) 0.0126 (± 0.00454)
VAE (1 MC sample) 0.0076 (± 0.03913) 0.0036 (± 0.00101) 0.0095 (± 0.01733)

SDGM 0.0068 (± 0.00198) 0.0064 (± 0.00452) 0.2467 (± 0.00330)
ADGM 0.0086 (± 0.01838) 0.0065 (± 0.00203) 0.2474 (± 0.00306)

2 Results and Discussion

Table 1 displays the ELBO achieved by the various models on a held out test set of the Pose dataset,
ranked in order of decreasing performance. We also report on the timings of different sections of the
pipeline for these models in Table 2.

2.1 Discussion

While both the Householder and IAF models utilize normalizing flows, we note that the reduced
complexity of the Householder flow leads to less powerful transformations of the latent space
compared to IAF. Fewer IAF transformations are required to achieve better performances than the
Householder models. The SDGM achieves strong results despite not using normalizing flows. We can
consider normalizing flows as a way of adding depth in the latent space by repeatedly transforming
the latent space. With the SDGM, depth in the latent space is explicitly addressed in the modeling
assumptions. With the VAE and IWAE, we note that increasing the number of Monte Carlo (MC)
samples can sometimes lead to over-fitting on the training set and poor fits on the held out test set.

The encoding time captures the time taken to move a data point through the encoder network to the
first stage of the latent space. Further transformations of the latent space and the eventual decoding
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back into a data point are considered part of the decoding time. The update time is the how long the
network took to update its parameters via back propagation. For all models, we recorded the timings
across 100 epochs and display the average in Table 2. Due to the our particular definition of encoding,
we note that most models take the same amount of time to encode a data point. The exceptions are
the ADGM and SDGM model which take longer due to the additional auxiliary variable. Due to the
batch processing, we observed that while the IWAE takes longer to train, during inference it isn’t
significantly slower than the standard VAE. Comparing the normalizing flow methods, we see that
adding another Householder flow is far less costly than adding another IAF transformation for the
training stage.

2.2 Practical Considerations

Across the datasets and models, we observe that training times have larger variations compared to
inference timings. If training times are not an issue, the IAF and SDGM model perform quite well
during testing. The IWAE is also able to perform quite well though the number of MC samples is
an extra parameter to tune as too many leave the model liable to over-fitting. This is in contrast to
the normalizing flow methods which seem to improve as more transformations are added. Compute
resources permitting, more transformations are recommended.

3 Conclusions and Future Work

A more complete set of results and evaluations can be found at D’Cruz (2017). We offer a thorough
comparison of several modifications to the VAE, examining both ELBO and modeling time. By
considering both these aspects, we are able to offer practical guidelines on choosing an appropriate
model for the task at hand. Through examining trends on different datasets, we are able to state
our conclusions more decisively. In addition, we have also contributed an extensive Chainer code
repository (D’Cruz (2017)) to allow others access to these new probabilistic deep generative models
for the purpose of replicating our experiments and also applying these models to new tasks.

Moving forward, we will consider more models and carry out ablative studies. We also propose using
convolutional layers instead of standard multi-layer perceptrons as the former have shown promise
for image data (Krizhevsky et al. (2012); Radford et al. (2015)). Depth in the stochastic layer will
also be investigated.
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