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Abstract

Despite recent improvements in training methodology, discrete latent variable
models have failed to achieve the performance and popularity of their continuous
counterparts. Here, we evaluate several approaches to training large-scale image
models on CIFAR-10 using a probabilistic variant of the recently proposed Vector
Quantized VAE architecture. We find that biased estimators such as continuous
relaxations provide reliable methods for training these models while unbiased
score-function-based estimators like VIMCO struggle in high-dimensional dis-
crete spaces. Furthermore, we observe that the learned discrete codes lie on
low-dimensional manifolds, indicating that discrete latent variables can learn to
represent continuous latent quantities. Our findings show that continuous relax-
ation training of discrete latent variable models is a powerful method for learning
representations that can flexibly capture both continuous and discrete aspects of
natural data.

1 Introduction

Unsupervised learning of useful representations remains a key challenge in machine learning. Con-
tinuous latent variables models have made considerable progress, largely due to the ease of training
with variational inference and the reparameterization trick (Kingma & Welling, 2013}, Rezende et al.}
2014). However, datasets are naturally modelled as discrete variables or mixtures of discrete and
continuous variables where the reparameterization trick is not directly applicable. Furthermore,
recent findings suggest that discrete categorical distributions can effectively capture the properties
of continuous variables (see e.g. PixelRNN|Oord et al.|(2016))), and are more flexible at modelling
multimodal distributions than simple continuous distributions such as Gaussians. Still, the usage of
discrete variables has largely been limited to low-dimensional class labels in semi-supervised models
(Kingma et al.}2014)) or model classes tailored specifically to discrete variables (Bornschein et al.,
2016; Rolfe}, 2016; Bornschein et al., | 2017). Here we study whether we can train large probabilistic
discrete latent variable models and what representations they learn.

Recently, two types of gradient estimators have shown promising results for learning discrete latent
variable models: 1) score-function gradient estimators such as VIMCO (Mnih & Rezende| 2016)) and
NVIL (Mnih & Gregor, 2014) and 2) continuous relaxation approaches that approximate discrete
distributions with a continuous counterpart (Jang et al.,[2016; Maddison et al.,|2016). While these
estimators work well in small models, it remains unclear whether they can be utilized for large
generative models of images. For larger-scale models, the recently proposed Vector Quantized VAE
(VQ-VAE) (Oord et al.l |2017) model has shown success by combining a learned codebook used
for deterministic nearest-neighbour vector quantization with a novel learning algorithm based on a
straight-through gradient estimator and an additional regularizer. This model has achieved impressive
generative performance on images, comparable to similar continuous latent variable models. However,
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it is not clear whether the gain in performance is primarily due to the specific parameterization of the
nearest-neighbour vector quantization or to the specific algorithm used to learn the codebook vectors.

In this work we develop a discrete generative model using a similar codebook lookup as in the VQ-
VAE model, but with probabilistic sampling from a categorical distribution instead of deterministic
nearest neighbour selection. We evaluate several gradient estimators for training these models, and
find that the probabilistic model trained with continuous relaxation using Gumbel-Softmax (Jang
et al., [2016; Maddison et al., 2016)) achieves a higher variational lower bound (ELBO) than the
deterministic VQ-VAE on the CIFAR-10 dataset. Furthermore, we show that probabilistic discrete
latent variable models can be trained with both large numbers of discrete latent variables and a large
number of categories per latent variable. Finally, we analyze the learned discrete representations and
find that they flexibly learn to represent both discrete and continuous structures.

2 Theory and Method

To compare deterministic and probabilistic models we interpret all models as optimizing the ELBO:
logp(z) 2 L(x) = E.ng(z]2) [log p(z]2)] — KL[g(2]z)|p(2)], (D

with a factorial prior p(z) = Cat(6#) and observation model p(z|z) = Cat(f,(m,)) with trainable
parameters 6 and ¢ respectively. The parameterization of the inference model ¢(z|z) differs between
the VQ-VAE and the probabilistic discrete models as described below.

The VQ-VAE is a deterministic autoencoder with a discrete latent space.The encoder produces a
continuous vector representation, v = fe,.(x) € RP which is then compared to each row in a
codebook matrix M € RE*P using Euclidean distance. The nearest-neighbour vector m;, i =
argmin,, (|my — v|2),k = 1...C is then used for reconstructing the data & = f4..(m;). The model
learns to vector-quantize v using the codebook M, and the index ¢ of the nearest neighbour can be
interpreted as the discrete latent representation. Gradients are passed between the encoder and decoder
using the straight through-estimator and the codebook matrix M is updated using a rule similar to
k-means where the each my, is moved towards the centroid of the v’s assigned to it. The encoder can
be interpreted as a deterministic inference model with ¢(z|z) = (%), thus the KL-divergence in Eq.
is the same fixed constant for all inputs.

For the probabilistic models we let ¢(z|x) = Cat(f(z, M)), where f(z, M) calculates the logits
for the categorical distribution using the distance between v and the rows of M. This model is
a discrete VAE with a specific parameterization and parameter sharing between the encoder and
decoder. If we interpret the codebook as a trainable memory and the encoder output v as memory
query the model becomes reminiscent of generative models with memory (e.g. Bornschein et al.
(2017))). We train the probabilistic models using either 1) VIMCO with 4 samples from ¢(z|x) or 2)
Gumbel-Softmax relaxation with a temperature of 0.5, a single sample from ¢(z|x) and propagating
either hard (discrete, denoted GS-Hard) or soft (continuous, denoted GS-Soft) samples forward
during training . Note when evaluating we always use hard discrete samples. The encoders and
decoders are fully convolutional and follow the settings in|Oord et al.| (2017): The encoder uses two
strided convolutions (4x down-sampling) followed by two layers of two residual blocks. The decoder
structure is similar but reversed, replacing the strided convolutions with transposed convolutions. We
use 4, 8, or 16 latent variables per spatial position in the latent space and 256 feature maps in all other
convolutions. All the experiments were performed on the CIFAR-10 dataset, using a minibatch size
of 64 and the Adam optimizer with a learning rate of 5 x 107%.

3 Results and Conclusion

In Figure[I(a)| we show bits/dim for the different learning algorithms as a function of the number of
vectors C' in the codebook. Across model classes the Gumbel-Softmax gradient estimator using soft
samples (GS-Soft) achieve the best performance of 4.61 bits/dim using 512 categorical dimension.
Importantly, we find that the probabilistic models (Fig red and blue) are able to flexibly adapt
the model capacity (KL term in ELBO) as the performance does not degrade as the categorical
distributions C'is increased beyond 128. For the VQ-VAE model (Fig green and orange), the
performance is maximized at 4.81 bits/dim for a specific value of C, since the deterministic inference
model does not allow these models to adapt the latent capacity as C' is increased. We note that



Oord et al.|(2017) report a somewhat better VQ-VAE result of 4.67 bits/dim. Models trained with
VIMCO and GS-Soft perform similarly for small categorical dimensions, but VIMCO struggles
to take advantage of the additional capacity of larger dimensions. As a point of reference, Gregor
et al.| (2016) report 4.54 bits/dim for a comparable convolutional VAE model with continuous latent
variables, though we note that better performance can be achieved with the current state-of-the-art
autoregressive models (Oord et al.| 2016} [Salimans et al.,[2017)) and hierarchical models (Kingma
et al., 2016). Visualizing the rate-distortion trade-off (X L(q(z|z)||p(2)) vs. logp(z|z)) reveals
very different learning dynamics for the probabilistic and deterministic models (Figure[I(c)). The
VQ-VAE model operates at a fixed capacity throughout training and learns to reduce distortion only
— the small changes in KL are due to the prior adapting to the empirical distribution of the code
usage. In contrast, the probabilistic models slowly introduce capacity into the model to decrease
distortion, yielding models that operate at both lower distortion and lower rate for the models trained
with GS-Soft.

Finally, we analyzed the learned discrete representations in the codebook matrix M. Figure [I(b)]
shows the fraction of explained variance as a function of the number of principal components of M
for models with 64 categorical dimensions and 16 latent variables per spatial position. For all models,
the learned codebook matrices are low-dimensional, spanning fewer than 5 dimensions. To further
understand the structure of the low-dimensional codes we visualized their projection onto the first 3
principal components (Figure[2). We find that the codes typically tile a 1- or 2-D continuous manifold,
indicating that the discrete latent variables are learning to represent a low-dimensional continuous
signal. In conclusion, our results show that when trained with the Gumbel-Softmax/Concrete
relaxation discrete latent variable models can perform on par with continuous latent variable models,
and capture both discrete and continuous aspects of natural data.

58 —— GS-Soft, 16 latent GS-Soft 65 ® GS-Soft
— \(/s(s}y::;le latent e GS-Hard
— latent
’ o e VQVAE
56 VQUVAE, 16 latent = 280 T Vﬁ/\ =
—— VIMCO, 16 latent « 5
g 54 ! Z 55
5 ks )
552 s S 50 S
o 3 2
c S
5.0 K @ a5
\/__ g [a} 5.41 bits/d
o ‘ its/dim
4.8 4.0
N §_4.84 bits/dim
N 4 77 bits/dim
46 35 4 63 b\ts/d\m
4 16 64 128 256 512 1024 1 3 5 7 0.0 0.2 0.4 0.6 0.8 1.0 12
Categorical Dimensions Principal Component Rate (bits/dim)
(a) (b) (©)

Figure 1: Comparison of Gumbel-Softmax (GS), VIMCO and VQ-VAE models. a) ELBO in bits/dim
as a function of the dimension C' of the codebook M. b) Explained variance for the principal
components of M c) Rate-distortion curves and learning progression.
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Figure 2: Visualization of codebooks. Columns are different categorical latent variables, and rows
are different training methods. Points within each plot are the location of a learned code (row of M)
projected onto the first 3 prinicpal components of M. Colors show the norm of each code (blue small,
yellow large).
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