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Abstract

Recently, deep reinforcement learning has made significant strides in performance
on applications such as Go and Atari games. However, practical methods for
balancing exploration and exploitation in complex domains is still largely unsolved.
Thompson Sampling and its extension to reinforcement learning provide an elegant
approach that only requires access to posterior samples. At the same time, advances
in approximate Bayesian methods have made posterior approximation for neural
networks practical. As a first step towards understanding the impact of approximate
posteriors on Thompson Sampling, we compare approximate posterior sampling
methods combined with Thompson Sampling in a series of contextual bandit
problems.

1 Introduction

Balancing exploration and exploitation is a central challenge in sequential decision making. Thomp-
son sampling [1] and its extension to reinforcement learning, Posterior Sampling [2], provide an
elegant approach that tackles the exploration-exploitation dilemma by maintaining a posterior over
models and choosing actions in proportion to the probability that they are optimal. Unfortunately,
maintaining such a posterior is intractable in all but the simplest problems.
Several recent papers [3, 4, 5] have explored the idea of using stochastic value functions parameterized
by neural networks to choose actions, which might be understood as implementing an approximate
form of posterior sampling. Although they showed improvement over naïve exploration strategies
(i.e., ε-greedy) on the challenging Atari benchmark, we still lack a clear understanding of the strengths
and weaknesses of these approaches. Apart from that work, recent developments in Bayesian neural
networks [6, 7] provide scalable approaches to approximating the posterior over neural networks.
These directly lead to approximate Thompson sampling strategies. In this work, we take a step back
and investigate how approximate model posteriors affect the performance of decision making when
used with Thompson Sampling in the much simpler contextual bandit problem. This allows us to
disentangle the exploration-exploitation dilemma from the challenge of using function approximators
with Q-learning.
In the contextual bandit setting, we observe a context Xt ∈ Rd at each timestep t, then choose one
of the k available actions, at, according to an algorithm, and finally receive a reward rt = rt(Xt, at).
The cumulative reward for the algorithm is given by r =

∑
t rt, and cumulative regret is defined

as E[r∗ − r], where r∗ is the cumulative reward of the optimal policy. The goal is to minimize
cumulative regret.

2 Algorithms

We describe the algorithms used to approximately sample from the model posterior in our experiments.
Linear Methods We apply closed-form updates for the posterior in Bayesian linear regression [8]
(rt = xTt β + ε where ε ∼ N (0, σ2)) which admit a computationally-efficient online version. We
consider exact linear posteriors as a strong baseline. Importantly, we model the joint distribution
of β and σ2 for each action. Sequentially estimating the noise level σ2 for each action allows the
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algorithm to adaptively improve its understanding of the volume of the hyperellipsoid of plausible
β’s, leading, in general, to a more aggressive initial exploration phase (in both β and σ2).
Neural Linear The main problem linear algorithms face is their lack of representational power,
which they complement with accurate uncertainty estimates. A natural attempt at getting the best of
both worlds consists in performing a Bayesian linear regression on top of the representation of the
last layer of a neural network, similarly to [9].
Neural Greedy We refer to the algorithm that simply trains a neural network and acts greedily (i.e.,
takes the action whose predicted score for the current context is highest) as RMS, as we train it using
the RMSProp optimizer. This is our non-linear baseline. We also tried the ε-greedy version of the
algorithm, where a random action was selected with probability ε for some decaying schedule of ε.
Variational Inference Variational approaches approximate the posterior by finding a distribution
within a tractable family that minimizes the KL divergence to the posterior [10]. Typically (and in
our experiments), the posterior is approximated by a mean-field or factorized distribution. Recent
advances have scaled these approaches to estimate the posterior of neural networks with millions
of parameters [6]. A common criticism of variational inference is that it underestimates uncertainty
(e.g., [8]), which could lead to under-exploration.
Dropout [11] can also be seen as optimizing a variational objective [12, 13], which leads to a
straight-forward posterior approximation and application to Thompson sampling.
Markov Chain Monte Carlo methods construct a Markov chain whose stationary distribution is
the posterior distribution. The Stochastic Gradient Langevin Dynamics (SGLD) methods [14, 15]
add Gaussian noise to the model gradients during stochastic gradient updates in such a manner that
each update results in an approximate sample from the posterior. Stochastic Gradient Fisher Scoring
(SGFS) [16, 17] uses the Fisher information matrix as a preconditioner in SGLD. [18] develops
methods for approximately sampling from the posterior using a constant learning rate in SGD, and
a prescription for a stable version of SGFS. We evaluate the diagonal-SGFS and constant-SGD
algorithms from [18] in this work.
Bootstrap A simple approach to approximate the sampling distribution of any estimator is the
Bootstrap [19]. We simultaneously train q models, where each model i is based on a different dataset
Di. If all the data D is available in advance, Di is typically created by sampling |D| elements from D
at random with replacement. In our case, however, the data grows one example at a time. Accordingly,
we set a parameter p ∈ (0, 1], and append the new datapoint to each Di independently at random
with probability p. In order to emulate Thompson Sampling, we sample a model uniformly at random
and take the action predicted to be best by the sampled model.
Direct Noise Injection Parameter-Noise [20] is a recently proposed approach for exploration in deep
RL that has shown promising results. The training updates for the network are unchanged, but when
selecting actions, the network weights are perturbed with isotropic Gaussian noise. Crucially, the
network uses layer normalization [21], which ensures that all weights are on the same scale.
Gaussian processes [22] are a gold-standard method for modeling distributions over non-linear
continuous functions, and a natural baseline. Our implementation is a multi-task Gaussian process [23]
with a linear and Matern 3/2 product kernel over the inputs and an exponentiated quadratic kernel
over latent vectors for the different tasks.
As with any empirical study, there is a limit to the number of experiments that can be run. Although
promising, we did not include expectation propagation [24] and α-divergence minimization of which
variational inference is a special case [25]. We leave evaluating these algorithms as future work.

3 Empirical Evaluation

We evaluated the algorithms (see Appendix A) on several bandit problems constructed from real-world
datasets ([26, 27, 28] and Appendix B for details).
Neural Network Architectures. All algorithms based on neural networks as function approximators
used a fully-connected feedforward network with two hidden layers with 100 units each and softplus
activations (ReLu activations produced similar results). The network output a value for each of the k
outputs.
Updating Models. Ideally, we would train models after every observation until convergence. How-
ever, this limits the applicability of our algorithms in online scenarios where decisions must be made
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Table 1: Cumulative regret (relative to uniform randomly sampling actions) incurred by algorithms in
Section 2 (see Appendix A for details). We report the mean and standard error of the mean over 50
trials.

Mushroom Statlog Covertype Financial Jester

BBBN 5.08 ± 1.00 25.23 ± 0.00 59.89 ± 0.05 41.24 ± 2.17 68.04 ± 0.81
BBBN2 4.16 ± 1.04 25.23 ± 0.00 60.38 ± 0.31 50.04 ± 3.52 66.23 ± 0.86
BBBN3 9.42 ± 2.55 25.23 ± 0.00 60.21 ± 0.29 55.32 ± 3.70 65.02 ± 0.84
Bootstrapped NN 3.99 ± 0.20 1.58 ± 0.05 32.03 ± 0.89 14.76 ± 0.63 75.15 ± 0.54
Bootstrapped NN2 2.25 ± 0.09 1.73 ± 0.07 32.09 ± 0.91 17.67 ± 1.13 74.63 ± 0.63
Dropout (RMS3) 1.89 ± 0.08 8.48 ± 0.79 33.34 ± 0.89 16.82 ± 0.80 66.00 ± 0.56
Dropout (RMS2) 1.70 ± 0.06 7.35 ± 0.72 33.13 ± 0.78 16.09 ± 0.73 66.17 ± 0.75
GP 16.67 ± 0.79 2.65 ± 0.47 40.77 ± 0.31 4.23 ± 0.07 75.02 ± 0.83
Neural Linear 2.27 ± 0.10 1.15 ± 0.01 26.24 ± 0.05 6.90 ± 0.08 73.85 ± 0.46
RMS1 5.98 ± 0.40 2.49 ± 0.22 28.27 ± 0.39 15.96 ± 0.54 72.89 ± 0.64
RMS2 1.84 ± 0.09 3.32 ± 0.55 36.93 ± 1.55 20.00 ± 1.14 71.84 ± 0.68
RMS2b 3.42 ± 1.04 1.97 ± 0.46 29.58 ± 0.83 7.56 ± 0.62 73.24 ± 0.81
RMS3 1.94 ± 0.13 2.65 ± 0.29 36.02 ± 1.58 17.15 ± 0.91 71.05 ± 0.75
SGFS 3.80 ± 0.18 2.83 ± 0.27 36.48 ± 0.12 23.37 ± 0.74 69.52 ± 0.65
ConstSGD 7.38 ± 1.69 0.86 ± 0.13 21.90 ± 0.18 53.85 ± 3.28 73.62 ± 0.72
EpsGreedy (RMS1) 7.15 ± 0.33 2.32 ± 0.11 27.27 ± 0.16 15.33 ± 0.52 74.37 ± 0.59
EpsGreedy (RMS2) 2.29 ± 0.10 2.20 ± 0.14 31.31 ± 0.23 17.85 ± 0.94 71.42 ± 0.78
EpsGreedy (RMS3) 2.31 ± 0.11 2.24 ± 0.14 31.21 ± 0.21 16.78 ± 0.66 71.94 ± 0.77
LinDiagPost 17.78 ± 0.23 51.26 ± 0.03 95.49 ± 0.02 9.28 ± 0.07 59.11 ± 0.47
LinDiagPrecPost 9.66 ± 1.31 7.52 ± 0.02 34.41 ± 0.02 4.49 ± 0.05 58.15 ± 0.56
LinGreedy 14.16 ± 1.66 12.76 ± 0.67 35.22 ± 0.23 2.71 ± 0.35 58.52 ± 0.39
LinPost 6.11 ± 0.71 7.64 ± 0.02 34.38 ± 0.02 7.02 ± 0.06 58.25 ± 0.48
LinfullDiagPost 86.73 ± 0.11 28.29 ± 0.02 73.76 ± 0.03 6.82 ± 0.07 63.59 ± 0.49
LinfullDiagPrecPost 5.24 ± 0.77 7.37 ± 0.02 34.03 ± 0.03 3.89 ± 0.04 61.21 ± 0.49
LinfullPost 2.75 ± 0.31 7.36 ± 0.02 34.01 ± 0.02 5.40 ± 0.05 60.85 ± 0.51
Param-Noise 2.13 ± 0.16 2.13 ± 0.23 33.25 ± 0.75 16.96 ± 0.90 71.25 ± 0.77
Param-Noise2 4.67 ± 1.44 1.32 ± 0.23 29.01 ± 0.26 7.70 ± 0.52 73.57 ± 0.67
Uniform 100.00 ± 0.18 100.00 ± 0.03 100.00 ± 0.01 100.00 ± 1.60 100.00 ± 1.24

immediately. We trained the neural networks for 20 mini-batches every 20 timesteps1. The size
of each mini-batch was 512. We experimented with training on more mini-batches every training
iteration and found that it was essential for some algorithms like the variational inference approaches.
Hyper-Parameter Tuning In the bandit scenario, we do not have access to each problem a-priori for
tuning. Thus, for each algorithm, the hyperparameters were tuned once and shared across all tasks.
We evaluated the algorithms on a range of bandit problems created from real-world data. Briefly,
from classification datasets Mushroom, Statlog, Covertype, Financial, and Jester datasets [31], we
create bandit problems with 0/1 rewards as is standard (see Appendix A for details). They exhibit a
broad range of properties: small and large sizes, one dominating action versus more homogeneous
optimality, learnable or little signal, stochastic or deterministic rewards, etc. We summarize the final
cumulative regret in Table 1.

4 Discussion

No single algorithm bested the others in every bandit problem, however, we observed some general
trends. We found that although bootstrapping, dropout, and injecting random noise helped for some
problems, these strategies did not significantly and systematically improve performance in these
problems. This suggests that the intrinsic randomness of stochastic gradient descent is enough to
explore in many cases. Other algorithms, like Variational Inference and Monte Carlo approaches,
strongly couple their complex representation and uncertainty estimates. This proves problematic
when decisions are made based on partial optimization of both, as online scenarios usually require.
On the other hand, making decisions according to a Bayesian linear regression on the representation
provided by the last layer of a deep network offers a robust and easy-to-tune approach. It would be
interesting to try this approach on more complex RL domains.
Finally, a limitation of the study is that we assume that if we had access to the actual posterior at all
times t, then choosing actions using Thompson Sampling would lead to near-optimal cumulative
regret or, more informally, to good performance. In some problems, this is not the case; for example,
when actions that have no chance of being optimal still convey useful information about other actions.
Thompson Sampling (and UCB approaches) would never select such actions, even if they are worth
their cost [32]. In addition, Thompson Sampling does not take into account the time horizon where
the process ends, and if known, exploration efforts could be tuned accordingly [33].

1For comparison, Deep Q-Networks trained on Atari games were updated after every 4 actions [29, 3, 20, 30].
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Appendix

A Algorithms

Table 2: Detailed description of the algorithms in the experiments. Unless otherwise stated, algorithms
use ts = 20 (mini-batches per training period), and tf = 20 (one training period every tf contexts).

Algorithm Description

BBBN BayesByBackprop with σ = 0.5. (ts = 500, first 15 times ts = 10000).
BBBN2 BayesByBackprop with σ = 0.75. (ts = 500, first 15 times ts = 10000).
BBBN3 BayesByBackprop with σ = 1.0. (ts = 500, first 15 times ts = 10000).
Bootstrapped NN Bootstrapped with q = 5 models, and p = 0.85. Based on RMS3 net.
Bootstrapped NN2 Bootstrapped with q = 5 models, and p = 1.0. Based on RMS3 net.
Dropout (RMS3) Dropout with probability p = 0.8. Based on RMS3 net.
Dropout (RMS2) Dropout with probability p = 0.8. Based on RMS2 net.
GP For computational reasons, it only uses the first 1000 data points.
Neural Linear Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25. Based on RMS2 net.
RMS1 Greedy NN approach, fixed learning rate (γ = 0.01).
RMS2 Learning rate decays, and it is reset every training period.
RMS2b Similar to RMS2, but training for longer (ts = 500).
RMS3 Learning rate decays, and it is not reset at all. Starts at γ = 1.
SGFS Burning = 500, learning rate γ = 0.014, EMA decay = 0.9, noise σ = 0.75.
ConstSGD Burning = 500, EMA decay = 0.9, noise σ = 0.5.
EpsGreedy (RMS1) Initial ε = 0.01. Multiplied by 0.999 after every context. Based on RMS1 net.
EpsGreedy (RMS2) Initial ε = 0.01. Multiplied by 0.999 after every context. Based on RMS2 net.
EpsGreedy (RMS3) Initial ε = 0.01. Multiplied by 0.999 after every context. Based on RMS3 net.
LinDiagPost Σ in Eq. ?? is diagonalized. Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.
LinDiagPrecPost Σ−1 in Eq. ?? is diagonalized. Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.
LinGreedy Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.
LinPost Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.
LinfullDiagPost Σ in Eq. ?? is diagonalized. Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.
LinfullDiagPrecPost Σ−1 in Eq. ?? is diagonalized. Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.
LinfullPost Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.
Param-Noise Initial noise σ = 0.01, and level ε = 0.01. Based on RMS3 net.
Param-Noise2 Initial noise σ = 0.01, and level ε = 0.01. Based on RMS3 net. Trained for longer: ts = 800.
Uniform Takes each action at random with equal probability.

B Real-World Datasets

Mushroom. The Mushroom Dataset [34] contains 22 attributes per mushroom, and two classes:
poisonous and safe. As in [6], we create a bandit problem where the agent must decide whether
to eat or not a given mushroom. Eating a safe mushroom provides reward +5. Eating a poisonous
mushroom delivers reward +5 with probability 1/2 and reward -35 otherwise. If the agent does not
eat a mushroom, then the reward is 0. We set n = 50000.
Statlog. The Shuttle Statlog Dataset [31] provides the value of d = 9 indicators during a space
shuttle flight, and the goal is to predict the state of the radiator subsystem of the shuttle. There are
k = 7 possible states, and if the agent selects the right state, then reward 1 is generated. Otherwise,
the agent obtains no reward (r = 0). The most interesting aspect of the dataset is that one action
is the optimal one in 80% of the cases, and some algorithms may commit to this action instead of
further exploring. In this case, n = 43500.
Covertype. The Covertype Dataset [31] classifies the cover type of northern Colorado forest areas
in k = 7 classes, based on d = 54 features, including elevation, slope, aspect, and soil type. Again,
the agent obtains reward 1 if the correct class is selected, and 0 otherwise. We run the bandit for
n = 150000.
Financial. We created the Financial Dataset by pulling the stock prices of d = 21 publicly traded
companies in NYSE and Nasdaq, for the last 14 years (n = 3713). For each day, the context was
the price difference between the beginning and end of the session for each stock. We synthetically
created the arms, to be a linear combination of the contexts, representing k = 8 different potential
portfolios. By far, this was the smallest dataset, and many algorithms over-explored at the beginning
with no time to amortize their investment (Thompson Sampling does not account for the horizon).
Jester. We create a recommendation system bandit problem as follows. The Jester Dataset [35]
provides continuous ratings in [−10, 10] for 100 jokes from 73421 users. We find a complete subset
of n = 19181 users rating all 40 jokes. Following [36], we take d = 32 of the ratings as the
context of the user, and k = 8 as the arms. The agent recommends one joke, and obtains the reward
corresponding to the rating of the user for the selected joke.
The Statlog and Covertype datasets were tested in [37].
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