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Abstract
We examine how learning from unaligned data can improve both the data effi-
ciency of supervised tasks as well as enable alignments without any supervision.
For example, consider unsupervised machine translation: the input is two corpora
of English and French, and the task is to translate from one language to the other
but without any pairs of English and French sentences. To address this, we de-
velop feature matching auto-encoders (FMAEs). FMAEs ensure that the marginal
distribution of feature layers is preserved across forward and inverse mappings
between domains. FMAEs achieve state of the art for semi-supervised neural ma-
chine translation with significant BLEU score differences of up to 5.7 and 6.3 over
traditional supervised models. Furthermore, on English-to-German, FMAEs out-
perform last year’s best models such as ByteNet [8] while using only half as many
supervised examples.

1 Introduction

Massive collections of supervised data have been essential to deep learning advances such as im-
age classification [11], neural machine translation [16], and more recently, cross-domain and intra-
domain alignments such as text-to-image synthesis [14] and image-to-image translation [5]. How-
ever, perceptual domains most often arise without explicitly aligned pairs. Supervised examples
are human-labelled, which presents a fundamental bottleneck in learning from natural images or
language.

In this paper, we examine how learning from unaligned data can improve both the data efficiency
of supervised tasks as well as enable alignments without any supervision. For example, consider
unsupervised machine translation: the input is simply two corpora of English and French, and the
task is to translate from one language to the other but without any pairs of English and French
sentences. More generally in text, tasks often involve taking a source sentence as input and returning
a target sentence with a shared representation as the input but with target-specific properties; other
examples include text decipherment and “style transfer” of sentiment, authors, and/or genres.

In this work, we develop feature matching auto-encoders (FMAEs). We show empirically that FMAEs
learn powerful and alignments for neural machine translation. Most compellingly, FMAEs achieve
state of the art for semi-supervised neural machine translation with significant BLEU score differ-
ences of up to 5.7 and 6.3 over traditional supervised models. Furthermore, on English-to-German,
FMAEs outperform last year’s best models such as ByteNet [8] while using only half as many super-
vised examples.

2 Latent Variable Model for Alignment

We formalize the problem and then derive a principled approach with probabilistic models. There
are two data sets of i.i.d observations {x} ∼ pdata(x) and {y} ∼ pdata(y). Each data point is a
variable-length sequence of discrete values, x = (x1, . . . , xT ), and similarly for y.1 The goal is to

1For now, we assume there are no supervised examples, which are pairs {(x, y)} ∼ pdata(x, y).
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(a) Latent variable model where
z represents invariant struc-
ture across domains. Dot-
ted lines represent inference.
With unaligned data, we only
observe individual x’s and y’s
and not pairs.
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(b) Feature matching auto-encoders (FMAEs). Each alignment mapping (top
and bottom) is written as a composition of feature maps with embedding
layers Ex, Ey and a sequence of hidden layers H`. FMAEs minimize
reconstruction error (blue) plus an adversarial penalty which matches the
marginal distributions over feature layers (red); in experiments, we only
match embedding layers.

learn a mapping between the domains G : X → Y , or conversely, F : Y → X . Given a test input
in one domain, this lets us predict the output in the other.

With probabilistic generative models, a natural approach is to posit a generative process according
to the factorization p(z)p(x | z)p(y | z) (Figure 1a). The latent variable z has a fixed prior, and
each domain’s observations are drawn conditionally independent given z via a neural network. This
model has been studied as a principle for one shot learning and domain adaptation [15], and has also
been revisited for multimodal learning [17, 20, 4, 19].

Using maximum likelihood, we maximize the following with respect to model parameters,

Epdata(x)[log p(x)] + Epdata(y)[log p(y)].

Maximizing is equivalent to minimizing the negative marginal density. Standard variational methods
posit an upper bound on this loss [7],

Epdata(x)q(z | x)[− log p(x | z)] + Epdata(y)q(z | y)[− log p(y | z)] +
Epdata(x)[KL(q(z |x) ‖ p(z)]) + Epdata(y)[KL(q(z | y) ‖ p(z)]).

(1)

The first two terms can be interpreted as “reconstruction errors”, which determine the average num-
ber of bits to capture a data point x (y) under noisy encodings. The last two terms are divergences
which regularize the individual encoders; it shares information across domains via shrinkage toward
the prior. After training, the model performs alignments by composing encoders with decoders: for
an input x, map x 7→ z via q(z |x) and z 7→ y via p(y | z); the converse holds for an input y.

Empirically (§ 4), we found that a latent variable model trained with Equation 1 fails to learn align-
ments. From a statistical point of view, selecting the right prior is key to successfully share across
domains, and it is difficult to specify our assumptions about alignment this way. From a computa-
tional point of view, difficulties exist in optimizing the variational objective while utilizing the latent
code. Using this model as motivation, we design a method overcoming these problems.

3 Feature Matching Auto-Encoder

The latent variable model in § 2 describes alignment as a composition of encoder-to-decoders X →
Z → Y and Y → Z → X . Here, we consider alignment mappings under finer granularity as a
sequence of feature maps. Figure 1b displays a composition of two embedding layers and L hidden
layers for each alignment mappingG : X → Y and F : Y → X . For layer indices ` = 0, . . . , L+1,
denote individual feature maps as g` : H`−1 → H` for G and f` : H` → H`−1 for F ; ` = 0 and
L+ 1 include the embeddings as domain and range respectively.

For a layer ` ∈ {0, . . . , L+ 1}, consider the invariance property

p(g`(x)) = p(fL+1−`(y)). (2)
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Equation 2 says that the marginal distribution of a feature layer should be the same regardless of
whether the layer is induced by the data distribution on x (left hand side) or if the layer is induced
by the data distribution on y (right hand side).

If the number of hidden layers L = 1, this invariance reduces to matching the distribution of the
middle layer in the mappings X → Z → Y and Y → Z → X . This mimicks the distribution
invariance in § 2 where two KL divergences penalize deviations from a fixed prior distribution;
however, Equation 2 posits a single divergence which penalizes deviation from each other. This pulls
information across domains with an implicit, learnable density on the features. It indirectly posits a
prior over the shared space without the need to specify a fixed, tractable prior density.

Unlike the latent variable model, feature matching also matches across arbitrary layers in a neural
network. This lets us perform matching on feature layers closest to data space (namely, the embed-
ding layers) while still avoiding the difficulties of adversarial training directly on discrete sequences.
Note this also avoids the issue of latent code utilization in the decoder: matching embedding layers
forces the decoder to use the encoder output in order to marginally match the distribution of the
outputted embedding layer.

To enforce Equation 2, we apply an adversarial penalty jointly over the desired feature layers.
Namely, to match the two embedding layers, consider the penalty

Epdata(x)pdata(y)[f(ex, ey)]− Epdata(x)pdata(y)[f(ex, ey)], (3)

where in the first term, ex is set via the input embedding layer X → Ex and ey is set to the output
embedding via X → Ex → · · · → Ey; in the second term, the converse holds where ex is set to the
output embedding via Y → Ey → · · · → Ex and ey is set via the input embedding layer X → Ex.
With a discriminator over 1-Lipschitz functions, the max over f is equal to a Wasserstein distance
between the marginal embedding distributions [9].

Using the penalty of Equation 3, FMAEs minimize an objective with reconstruction terms,

Epdata(x)[− log p(x | ey)] + Epdata(y)[− log p(y | ex)]+

λ
(
Epdata(x)pdata(y)[f(ex, ey)]− Epdata(x)pdata(y)[f(ex, ey)]

)
.

(4)

Using Monte Carlo samples and reparameterization gradients [10], we minimize Equation 4 with
respect to encoder-decoder parameters and we maximize it with respect to the discriminator f . Both
enable backpropagation.

Semi-Supervised Learning. FMAEs extend to learn from supervised examples in addition to un-
aligned (unsupervised) ones. Namely, to learn from paired examples {(x, y)} ∼ pdata(x, y), we
add the typical likelihood terms to Equation 4 to encourage G(x) = y and F (y) = x per data
point,

λsup Epdata(x,y)[− log p(x |y)− log p(y |x)],

where λsup ∈ R+ balances how much we weigh aligned examples over unaligned examples.

4 Experiments: Neural Machine Translation

Table 1 displays results using FMAEs as well as current state-of-the-art translation models. For
comparison on limited supervision, we also trained the Transformer network (with same modified
architecture as the FMAE’s); it only uses the available supervised examples. In one version we used
the same architecture and hyperparameters as one mapping in the FMAE (thus it has half the total
number of parameters); in another version, we doubled the attention layer sizes to have comparable
size in its single mapping to FMAE’s dual mappings. The FMAE significantly outperforms the Trans-
former network. The BLEU scores have a dramatic difference from 2.5 and 5.4 on 2M supervised
examples to up to 5.7 and 6.3 on 500K supervised examples.

Given the equivalent amount of supervision, the unaligned data set size in EN-FR (roughly 34-35M
sentences per corpus) enables the FMAE to have improved BLEU scores in EN-FR over EN-DE.
Most compellingly, we also note that our results for EN-DE outperformed last year’s results of
ByteNet [8] while using only half as many supervised examples.
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Method on EN-DE # of Supervised Examples (BLEU)
500K 1M 2M 4.5M

Transformer (≈65M params) 12.3 14.6 20.3
Transformer (≈130M params) 10.3 18.5 21.5
Feature matching auto-encoder 16.0 21.4 24.0
Transformer (“big”) [18] 28.4
Conv Seq2Seq [3] 25.16
Google NMT [21] 24.6
ByteNet [8] 23.75
RNN Enc-Dec-Att [12] 20.9
RNN Enc-Dec [12] 14.0

Method on EN-FR # of Supervised Examples (BLEU)
500K 1M 2M 36M

Transformer (≈65M params) 12.1 15.1 18.9
Transformer (≈130M params) 10.8 14.6 21.3
Feature matching auto-encoder 17.1 23.1 26.7
Transformer (“big”) [18] 41.0
Conv Seq2Seq[3] 40.46
Google NMT [21] 39.92

Table 1: (top) BLEU scores on EN-DE newstest2014 test set while trained over a fixed number of
supervised examples. (bottom) BLEU scores on EN-FR newstest2014 test set while trained over
a fixed number of supervised examples. FMAEs outperform existing methods for semi-supervised
translation with significant BLEU score differences.

Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine
Translation. arXiv preprint arXiv:1609.08144.

[22] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio,
Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In
International Conference on Machine Learning.

A Experiment Details

In all experiments, we used the Adam optimizer with an initial step-size of one of
{0.001, 0.0005, 0.0001}; we set β1 = 0.9, β2 = 0.98, and ε = 10−8. For machine translation,
we followed the learning rate schedule of Vaswani et al. [18] which increases the learning rate lin-
early for a fixed number of warm-up steps during training followed by a decrease proportional to
the inverse square root of the step number. For text decipherment and sentiment transfer, we used
a batch size of 256 unaligned input and output sequences. Sequences were batched together by ap-
proximate sequence length. Convolutional filters and weight matrices were initialized with Glorot
uniform; embeddings initialized uniformly between [−0.1, 0.1]; biases initialized at 0.

For machine translation, we used the standard data sets of WMT 2014 EN-DE and WMT 2014
EN-FR. The WMT 2014 EN-DE data set consists of roughly 4.5 million sentence pairs. Following
Vaswani et al. [18], we encoded sentences using byte-pair encoding, producing a shared source-
target vocabulary of about 37,000 tokens. The WMT 2014 EN-FR data set consists of a much larger
corpus of 36 million sentence pairs. We split tokens into a 32,000 word-piece vocabulary [21]. To
simulate a semi-supervised task, we partitioned both data sets into a fixed number of supervised
pairs and made the rest unaligned. In both tasks, we evaluate performance with newstest2014 as test
set and newstest2013 as validation set.

A.1 Architecture: Attention

For the network architectures, we primarily follow the Transformer of Vaswani et al. [18], which has
seen strong success for sequence-to-sequence modeling. The Transformer uses only attention layers
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for both the encoder and decoder; see ??. The encoder applies an embedding layer to inputs followed
by L layers of self-attention. The decoder applies an embedding layer followed by L alternations of
a self-attention layer and a layer which attends over the encoder hidden states.

We make three adjustments which we found improved our experiments. First, we add noise to
attention layers in order to sparsify the locations to attend to; we provide detail in the next subsec-
tion (Appendix A.2). Second, we apply layer norm to the input of each residual block instead of
afterwards. Third, we use learnable positional encodings rather than fixed sinusoidal embeddings
as a way to impose ordering in the sequences [3]. Namely, the embedding layers take input ele-
ments x = (x1, . . . , xT ), perform a table look-up to obtain its word embedding free parameters
w = (w1, . . . , wT ), and sums it with positional free parameters (p1, . . . , pT ) to return the embed-
ding, ex = (w1 + p1, . . . , wT + pT ).

For the discriminator, we also apply L self-attention layers and clip weights following Arjovsky
et al. [1]. As the matching distributions assume independence among features, we parameterize the
discriminator to not include interactions among its inputs. A problem when training Equation 4
is that we are matching the discriminator across two distributions with free parameters. This pro-
duces difficulties because the mappings can constantly scale the output of f so long as the relative
difference remains the same. To address this, we simply L2-normalize the inputs to f .

A.2 Adding Noise to Attention

An attention function can be described as taking a query and memory as input and returning a
weighted sum over the memory states. The query and each memory state are vectors such as a
decoder hidden state and the set of encoder hidden states respectively. This is also known as “soft
attention,” which is equivalent to taking an expectation over a categorical variable z ∈ {1, . . . , T}
which attends to a specific memory state,

Ep(z |M,q)[Mz] =

T∑
t=1

πtMt,

where z’s distribution is a function of the matrix of memory states M and query vector q.

Soft attention produces dense weights where all states have a nonzero probability. Many tasks only
require attending over few inputs such as machine translation, which often only requires finding the
corresponding word to translate and its context. In order to sparsify the attended locations, we add
noise to the softmax inputs: given a T -dimensional vector of logits inputs, return

π = softmax((logits+g)/τ), g = (g1, . . . , gT ), gt ∼ Gumbel(0, 1).

We use τ = 0.1 in experiments. This forces the inputs to robustify against noise by taking on large
positive or negative values [2]. It is equivalent to a sample from the Gumbel-Softmax distribution
and admits backpropagation [6, 13]. It can be interpreted as a relaxation of “hard attention” [22],
which requires score function gradients to handle the discrete variable. Adding noise augments
each attention layer as a stochastic layer in a deep latent variable model; the temperature parameter
bridges from hard to soft attention.2

2Empirically we find setting the temperature τ arbitrary close to 0 is undesirable. The model benefits from
attending to few but multiple locations, whereas hard attention assumes only one.
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