
Deep Neural Networks as Gaussian Processes

Jaehoon Lee∗†, Yasaman Bahri∗†, Roman Novak , Samuel S. Schoenholz,
Jeffrey Pennington, Jascha Sohl-Dickstein

Google Brain
{jaehlee, yasamanb, romann, schsam, jpennin, jaschasd}@google.com

1 Introduction

Deep neural networks have emerged in recent years as flexible parametric models which can fit
complex patterns in data. As a contrasting approach, Gaussian processes have long served as a
traditional nonparametric modeling tool. In fact, a correspondence due to [11] equates these two
models in the limit of infinite width and parameters drawn from a suitable prior.

Consider a deep fully-connected neural network with i.i.d. random parameters. Each scalar output
of the network, an affine transformation of the final hidden layer, will be a sum of i.i.d. terms, as
we discuss briefly in Sec. 2. In the limit of infinite width, the Central Limit Theorem3 implies that
the function computed by the neural network (NN) is a function drawn from a Gaussian process
(GP). This correspondence implies that if we choose the hypothesis space to be the class of infinitely
wide neural networks, an i.i.d. prior over parameters can be replaced with a corresponding GP prior
over functions. As noted by [16], this substitution enables exact Bayesian inference for regression
using neural networks. The computation requires building the necessary covariance matrices over the
training and test sets and straightforward linear algebra computations.

In the case of single hidden-layer networks, the form of the kernel of this GP is well known ([11, 16]).
Recently, kernel functions for multi-layer random neural networks have been developed, but only
outside of a Bayesian framework. As such, previous work has not identified the correspondence
between using these kernels as the covariance function for a GP and performing fully Bayesian
prediction with a deep neural network.

Our contributions:4 We describe this correspondence and develop a computationally efficient
pipeline to compute the kernel. We then use the resulting GP – hereafter referred to as the Neural
Network GP (NNGP) – to perform Bayesian inference for deep neural networks on MNIST and
CIFAR-10 across different hyperparameters including network depth, nonlinearity, training set size
(up to and including the full dataset consisting of tens of thousands of images), and weight and bias
variance. To utilize the exact Bayesian results for regression, we treat classification as regression on
one-hot targets; our intention here is to provide a first proof of concept for our method, and we leave
a fully Bayesian approach to classification for later work. We find that the GP-based predictions
are competitive and can outperform neural networks trained with stochastic gradient descent (Table
1). We further observe that, with increasing network width, the performance of neural networks
with gradient-based training approaches that of the NNGP computation (Figure 1), and that the GP
uncertainty is strongly correlated with prediction error (Figure 2). Our observations can also be
connected to the recent understanding of signal propagation in random neural networks [15].

∗Both authors contributed equally to this work.
†Work done as a member of the Google AI Residency program (g.co/airesidency).
3Throughout this work, we assume the conditions on the parameter distributions and nonlinearities are such

that the Central Limit Theorem will hold.
4We note that, this is extended abstract for the paper [10]. More details and results are available there.

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.

https://g.co/airesidency


Related work: Our work touches on aspects of GPs, Bayesian learning, and compositional kernels.
We are not aware of prior work treating deep neural networks and GPs in the manner we do. There
is related work on compositional kernels and the underlying recurrence relation and can be found
in ([2, 7, 4, 13, 15]). Moreover, a body of work on other constructions of GP analogs for multilayer
networks can be found in [9, 3, 8, 5, 1, 17].

2 Formulation

The correspondence between single-hidden layer neural networks and GPs can be found in [11, 12, 16].
We formulate the multi-layer correspondence, which proceeds by induction on the previous layer,
starting with the base case discussed in [11]. Let an L-layer deep fully-connected network of width
N and with pointwise nonlinearity φ have pre- and post-activations denoted zli and xli, respectively,
for the ith component in the lth layer. The input is simply denoted by x0 ≡ x. Weight and bias
parameters are random and independent and taken to have zero mean with variances σ2

w/N and σ2
b .

A GP with mean µ and covariance K is denoted GP(µ,K). In layer l, the network computes

zli(x) = bli +

N∑
j=1

W l
ijx

l
j(x), xlj(x) = φ(zl−1j (x)), (1)

where we have emphasized the dependence on the input. By the induction hypothesis, zl−1j is a
GP, identical and independent for every j. zli(x) is hence a sum of i.i.d. random terms so that, as
N → ∞, due to the multivariate Central Limit Theorem, any collection evaluated for a finite set
of inputs will have joint multivariate Gaussian distribution, zli ∼ GP(0,Kl). The joint distribution
of preactivations across index i will also be a multivariate Gaussian, and since the preactivation for
i, i′ with i 6= i′ has vanishing covariance, this implies independence, as noted in the single-layer
argument due to [11].

The covariance Kl is

Kl(x, x′) ≡ E
[
zli(x)zli(x

′)
]

= σ2
b + σ2

w Ezl−1
i ∼GP(0,Kl−1)

[
φ(zl−1i (x))φ(zl−1i (x′))

]
. (2)

The expectation requires only the joint distribution of zl−1i (x) and zl−1i (x′), which is a zero mean,
2D Gaussian with covariance matrix built out of Kl−1(x, x′), Kl−1(x, x), and Kl−1(x′, x′). Hence,
these are the only quantities that appear in the result. We summarize this as

Kl(x, x′) = σ2
b + σ2

w Fφ

(
Kl−1(x, x′), Kl−1(x, x), Kl−1(x′, x′)

)
(3)

to emphasize the recursive relationship between Kl and Kl−1 via a deterministic function F whose
form depends only on the nonlinearity φ. This gives an iterative series of computations which can be
performed to obtain KL for the GP describing the network’s final output. The function Fφ is known
in closed form for certain nonlinearities; for instance, for ReLU it is given in [2].

We develop a computational recipe to compute the covariance matrix for the NNGP corresponding to
any well-behaved nonlinearity φ. All steps can be implemented using accelerated tensor operations,
and computation of KL is typically faster than solving the system of linear equations in Equation (4).

The full computational pipeline is deterministic and differentiable. The shape and properties of a
deep network kernel are purely determined by hyperparameters of the deep neural network. Since
GPs provide exact closed form likelihoods, this kernel construction may allow principled hyper-
parameter selection or nonlinearity design, e.g. by gradient ascent on the log likelihood w.r.t. the
hyperparameters.

Bayesian Inference: Consider making a Bayesian prediction at test point x∗, given dataset D =
{(x1, t1), ..., (xn, tn)} of input-target pairs (x, t), using the GP correspondence as prior (see e.g.
[14]). The result can be computed exactly and reduces to matrix algebra: namely, z∗|D, x∗ ∼
N (µ̄, K̄) with

µ̄ = KL
x∗,D(KL

D,D + σ2
ε In)−1t, K̄ = KL

x∗,x∗ −KL
x∗,D(KL

D,D + σ2
ε In)−1KL,T

x∗,D (4)

where In is the n× n identity. KD,D,Kx∗,D are n× n, 1× n matrices constructed by recursion of
Equation 3.

2



3 Experimental Results

We compare NNGPs with SGD5 trained neural networks on the permutation invariant MNIST and
CIFAR-10 datasets. The baseline neural network is a fully-connected network with identical width at
each hidden layer. Training is on the mean squared error (MSE) loss, chosen so as to allow direct
comparison to GP predictions. We constructed the covariance kernel numerically for ReLU and Tanh
nonlinearities following the formulation described in Section 2.

Performance: We find that the NNGP often outperforms trained finite width networks, and that
trained neural network performance becomes more similar to that of the NNGP with increasing width.
See Table 1 and Figure 1.

Uncertainty: For conventional neural networks, capturing the uncertainty in a model’s predictions
is challenging [6]. In the NNGP, every test point has an explicit estimate of prediction variance
associated with it (Equation 4), due to its Bayesian nature. We observe that the NNGP uncertainty
estimate is highly correlated with prediction error (Figure 2).

(a) Accuracy (b) Mean squared error

Figure 1: The NNGP often outperforms finite width networks, and neural network performance more
closely resembles NNGP performance with increasing width. Accuracy and mean squared error on
MNIST and CIFAR-10 dataset are shown for the best performing NNGP and best performing SGD
trained neural networks for given width.

Table 1: The NNGP often outperforms finite width networks. Test accuracy on MNIST and CIFAR-10
datasets. The reported NNGP results correspond to the best performing depth, σ2

w, and σ2
b values

on the validation set. The traditional NN results correspond to the best performing depth, width and
optimization hyperparameters. Best models for a given training set size are specified by (depth-width-
σ2
w-σ2

b ) for NNs and (depth–σ2
w-σ2

b ) for GPs.

Num training Model (ReLU) Test accuracy Model (tanh) Test accuracy
MNIST:1k NN-2-5000-3.19-0.00 0.9252 NN-2-1000-0.60-0.00 0.9254

GP-20-1.45-0.28 0.9279 GP-20-1.96-0.62 0.9266
MNIST:10k NN-2-2000-0.42-0.16 0.9771 NN-2-2000-2.41-1.84 0.9745

GP-7-0.61-0.07 0.9765 GP-2-1.62-0.28 0.9773
MNIST:50k NN-2-2000-0.60-0.44 0.9864 NN-2-5000-0.28-0.34 0.9857

GP-1-0.10-0.48 0.9875 GP-1-1.28-0.00 0.9879
CIFAR:1k NN-5-500-1.29-0.28 0.3225 NN-1-200-1.45-0.12 0.3378

GP-7-1.28-0.00 0.3608 GP-50-2.97-0.97 0.3702
CIFAR:10k NN-5-2000-1.60-1.07 0.4545 NN-1-500-1.48-1.59 0.4429

GP-5-2.97-0.28 0.4780 GP-7-3.48-2.00 0.4766
CIFAR:45k NN-3-5000-0.53-0.01 0.5313 NN-2-2000-1.05-2.08 0.5034

GP-3-3.31-1.86 0.5566 GP-3-3.48-1.52 0.5558

5For all presented results, the variant of SGD used is Adam. Although not shown, we found vanilla SGD
produced qualitatively similar results, with slightly higher MSE.

3



Figure 2: The Bayesian nature of NNGP allows it to assign a prediction uncertainty to each test
point. This prediction uncertainty is highly correlated with the empirical error on test points. The
x−axis shows the predicted MSE for test points, while the y−axis shows the realized MSE. To allow
comparison of mean squared error, each plotted point is an average over 100 test points, binned by
predicted MSE. The hyperparameters for the NNGP are depth= 3, σ2

w = 2.0, and σ2
b = 0.2.

References
[1] Thang Bui, Daniel Hernández-Lobato, Jose Hernandez-Lobato, Yingzhen Li, and Richard

Turner. Deep gaussian processes for regression using approximate expectation propagation. In
International Conference on Machine Learning, pp. 1472–1481, 2016.

[2] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in neural
information processing systems, pp. 342–350, 2009.

[3] Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence and
Statistics, pp. 207–215, 2013.

[4] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances In Neural Information
Processing Systems, pp. 2253–2261, 2016.

[5] David Duvenaud, Oren Rippel, Ryan Adams, and Zoubin Ghahramani. Avoiding pathologies in
very deep networks. In Artificial Intelligence and Statistics, pp. 202–210, 2014.

[6] Yarin Gal. Uncertainty in deep learning. PhD thesis, PhD thesis, University of Cambridge,
2016.

[7] Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite neural
networks. arXiv preprint arXiv:1508.05133, 2015.

[8] James Hensman and Neil D Lawrence. Nested variational compression in deep gaussian
processes. arXiv preprint arXiv:1412.1370, 2014.

[9] Neil D Lawrence and Andrew J Moore. Hierarchical gaussian process latent variable models.
In Proceedings of the 24th international conference on Machine learning, pp. 481–488. ACM,
2007.

[10] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint
arXiv:1711.00165, 2017.

[11] Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto,
1994.

[12] Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto,
Dept. of Computer Science, 1994.

[13] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. In Advances In
Neural Information Processing Systems, pp. 3360–3368, 2016.

4



[14] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning,
volume 1. MIT press Cambridge, 2006.

[15] Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep informa-
tion propagation. ICLR, 2017.

[16] Christopher KI Williams. Computing with infinite networks. In Advances in neural information
processing systems, pp. 295–301, 1997.

[17] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial Intelligence and Statistics, pp. 370–378, 2016.

5


	Introduction
	Formulation
	Experimental Results

