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Abstract

The recent literature on deep learning offers new tools to learn a rich probability
distribution over high dimensional data such as images or sounds. In this work
we investigate the possibility of learning the prior distribution over neural network
parameters using such tools. Our resulting variational Bayes algorithm generalizes
well to new tasks, even when very few training examples are provided. Furthermore,
this learned prior allows the model to extrapolate correctly far from a given task’s
training data on a meta-dataset of periodic signals.

1 Learning a Rich Prior

Bayesian Neural Networks [1, 2, 3, 4] are now scalable and can be used to estimate prediction
uncertainty and model uncertainty [5]. While many efforts focus on better approximation of the
posterior, we believe that the quality of the uncertainty highly depends on the choice of the prior.
Hence, we consider learning a prior from previous tasks by learning a probability distribution p(w|α)
over the weights w of a network, parameterized by α, and leveraging this learned prior to reduce
sample complexity on new tasks.

More formally we consider a hierarchical Bayes approach across N tasks, with hyper-prior p(α).
Each task has its own parameters wj , withW = {wj}Nj=1. Using all datasets D = {Sj}Nj=1, we have
the following posterior:1

p(W, α|D) = p(α|D)
∏
j

p(wj |α, Sj)

∝ p(D|W)p(W|α)p(α)

∝
∏
j

∏
i

p(yij |xij , wj)p(wj |α)p(α),

For simplicity, in this work, we consider a point estimation of p(α|D). This can be justify by
considering scenarios where we have a lot of samples to learn α across many tasks while the
uncertainty we truly care about is the uncertainty over wj for new tasks.

To go beyond normal distributions for expressing p(wj |α, Sj), we get inspiration from the generator
of generative adversarial networks [6]. We use an auxiliary variable z ∼ N (0, I) and a deterministic
function projecting the noise z to the space ofw i.e. w = hα(z). Marginalizing z, we have: p(w|α) =∫
z
p(z)p(w|z, α)dz =

∫
z
p(z)δhα(z)−wdz, where δ is the Dirac delta function. Unfortunately,

directly marginalizing z is untractable for general hα. To overcome this issue, we add z to the joint

1p(xij) cancelled with itself from the denominator since it does not depend on wj nor α. This would have
been different for a generative approach.
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inference and we marginalize at inference time. Considering the point estimation of α, we now have:
N∏
j=1

p(wj |zj , α, Sj)p(zj |α, Sj) ∝
N∏
j=1

p(wj |zj , α)p(zj)
nj∏
i=1

p(yij |xij , wj),

where p(yij |xij , wj) is simply the conventional likelihood function of a neural network with weight
matrices generated from the function hα i.e.: wj = hα(zj). Also, we use:

p(zj) = N (0, I)

p(zj , wj |α) = p(zj)δhα(zj)−wj

p(zj , wj |α, Sj) = p(zj |α, Sj)δhα(zj)−wj

The task now consists in jointly learning a function hα common to all tasks and a posterior distribution
p(zj |α, Sj) for each task. At inference time, predictions are performed by marginalizing z i.e.:
p(y|x,D) = E

z∼p(zj |α,Sj)
p(y|x, hα(z))

1.1 Hierarchical Variational Bayes Neural Network

Given a family of distributions q({wj , zj}Nj=1) =
∏
j qθj (zj |Sj)δhα(zj)−wj , parameterized by

{θj}Nj=1 and α, the Evidence Lower Bound (ELBO) is:

ln p(D) ≥ E
q({wj ,zj}Nj=1)

N∑
j=1

nj∑
i=1

ln p(yij |xij , wj)−KL (q ‖ p) ,

=

N∑
j=1

E
qθj (zj |Sj)

nj∑
i=1

ln p(yij |xij , hα(zj))−
∑
j

E
q(wj ,zj)

ln
qθj (zj |Sj)
p(zj)

δhα(zj)−wj
δhα(zj)−wj

=

N∑
j=1

E
qθj (zj |Sj)

nj∑
i=1

ln p(yij |xij , hα(zj))−
∑
j

KL
(
qθj (zj |Sj)

∥∥ p(zj))
Note that after simplification2, the ELBO no longer depends explicitly on w . This is due to the fact
that both the posterior and the prior are using the same function to project z into w space3. A similar
simplification also happened in the likelihood, leaving the whole loss function independent of w.
This simplification has a major positive impact on the scalability of our approach. Since we no longer
need to explicitly calculate the KL on the space of w, we can simplify the likelihood function to the
following p(yij |xij , zj , α), which can be a deep network, parameterized by α taking both xij and zj
as inputs. This contrasts with the previous formulation where hα(z) produces all the weights of a
network, yielding a really high dimensional representation and slow training.

2 Related Work

To our knowledge, the only existing work performing hierarchical Bayesian inference with neural
networks for multi-task and few shot learning is the Neural Statistician [7]. Their algorithm shares
important similarities with ours. They have a main network conditioned on a probabilistic encoding of
the task, learned through variational Bayes. However, the main network is a generative model instead
of a discriminative model i.e. they use a variational auto-encoder [8]. Also, instead of using a free
form embedding for each task, they use an encoding network which reads every samples in the training
set to generate the task encoding. Those two differences make our algorithm simpler to implement
and more scalable to bigger dataset. Finally, their algorithm was not developed under the perspective
of weight uncertainty and there is no exploration of model uncertainty in their experiments.

Some recent papers on meta-learning are also targeting transfer learning from multiple tasks. Model-
Agnostic Meta-Learning [9] finds a shared parameter θ such that for a given task, one gradient step on

2We can justify the cancellation of the Dirac delta functions by instead considering a Gaussian with finite
variance, ε. For all ε > 0, the cancellation is valid, so letting ε→ 0, we recover the result.

3Since the posterior need to stay within the support of the prior, there is no need to do otherwise
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Figure 1: Preview of a few tasks (blue line) with
increasing amount of training samples (red dots).
Samples from the posterior distribution are shown
in semi-transparent colors. The width of each sam-
ples is two standard deviations (provided by the
predicted heteroskedastic noise).
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Figure 2: Mean Square Error on increasing
dataset size. The baseline corresponds to the
same model without the KL regularizer. Each
value is averaged over 100 tasks and 10 different
restart.

θ using the training set will yield a model with good predictions on the test set. Then, a meta-gradient
update is performed from the test error through the one gradient step in the training set, to update
θ. This yields a simple and scalable procedure which learns to generalize. However this approach
does not enable model uncertainty. Finally, [10] also considers a meta-learning approach where an
encoding network reads the training set and generate the parameters of a model, which is trained to
perform well on the testings set.

3 Experimental Results

3.1 Regression on 1d Harmonic signals

We demonstrate the ability of our model to learn a good prior on a dataset of periodic signals. The
model successfully generalizes the periodic structure to unseen signals, while maintaining appropriate
uncertainty about which periodic signal the data is sampled from. Specifically, each dataset consists
of (x, y) pairs (noisily) sampled from a sum of two sine waves with different phase and amplitude
(but the same frequency):

f(x) = a1 sin(ω · x+ b1) + a2 sin(2 · ω · x+ b2); y ∼ N (f(x), σ2
y).

We construct a meta-training set of 5000 tasks, sampling ω ∼ U(5, 7), (b1, b2) ∼ U(0, 2π)2 and
(a1, a2) ∼ N (0, 1)2 independently for each task. Then, x values are sampled according to N (µx, 1)
where µx ∼ U(−4, 4) and the number of training samples ranges from 4 to 50. Evaluation is
performed on tasks never seen during training.

3.2 Model

For a simple implementation of p(zj |Sj), one can useN (µj ,σ
2
j ), whereµj andσj are d dimensional

vectors for each task j, learned through the reparameterization trick [8]. But, we found that inverse
autoregressive flow (IAF) [11] converges at a faster rate and yields better final results.

Once z is obtained, we simply concatenate with x and use 12 densely connected layers of 128 neurons
with residual connections between every other layer. The final layer linearly projects to 2 outputs µy
and s, where s is used to produce a heteroskedastic noise, σy = sigmoid(s) · 0.1 + 0.001. Finally,
we use p(y|x, z) = N (µy, σ

2
y) to express the likelihood of the training set. To help gradient flow, we

use ReLU activation functions and Layer Normalization4 [12].

4Layer norm only marginally helped.
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3.3 Discussion

The results in Figure 1 exhibit the expected behavior. In the first plot, we can see the posterior latching
on the single training point and, most importantly, we observe a wide diversity of different functions
plausible under what we consider a good learned prior. In the second plot, with 2 training points, the
posterior is already having a good idea of the frequency. Then with 8 points, the task is mostly solved
and we are able to extrapolate far away from the training points. Finally with 256 points, the posterior
become highly confident on the observed points, and leverages the learned “periodic function” prior
to extrapolate confidently in regions without any observations.

In Figure 2, we compare the mean squared error against a version of the model with no KL, which
would correspond to a more traditional approach to multi-task learning. The comparison is performed
on an increasing size of the training set and we can observe a systematic and significant gain over the
baseline. We also compared using the log likelihood metric and the Without-KL version is off the
chart, performing 10 times worse on average.

We also observed some local minimum issues during training on new tasks5. We believe it is caused
by the posterior distribution being highly multi-modal in the small sample size regime6. In principle,
IAF should be able to handle multi-modal distributions. However, extended experiments showed it
was not adapting beyond a single distorted mode.
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