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Abstract

The Auxiliary Classifier GAN (AC-GAN) was proposed in [1] and was able to
yield high-quality images and state-of-the-art Inception Score. However, it is not
immediately apparent why exactly AC-GAN improves upon GAN with respect to
visual quality and the Inception Score. In this paper, we show that AC-GAN is a
Lagrangian to a constrained primal objective function that explicitly pushes the
density of the generator distribution away from the classifier’s decision boundary.
We verify empirically on MNIST-based experiments that AC-GAN indeed learns
a biased distribution that down-samples points near the decision boundary. Our
analysis suggests that AC-GAN’s bias is a contributing factor for AC-GAN’s
performance on the visual quality and Inception Score metrics.

1 Introduction

The development of generative adversarial networks (GAN) has enabled rapid advancements in the
learning of natural image distributions. However, GANs often have difficulty generating globally
coherent, high-resolution samples. To address this issue, the GAN literature has proposed a range
of solutions, including optimizing the architecture [2], improving the objective function [3], and
improving the optimization procedure [4].

In this paper, we focus on [1]’s Auxiliary Classifier GAN (AC-GAN), a variant of InfoGAN [5] that
incorporates a supervised learning signal. Let p∗(x, y) be the true joint distribution and pθ(x, y) be
our generator, where x is an image and y is the class label. We further denote d(p∗(x), pθ(x)) as the
Jensen-Shannon divergence and Hθ(Y |X) as the conditional entropy under the distribution pθ(x, y).
Given an auxiliary classifier qφ(y | x), AC-GAN minimizes the following objective

min.
θ,φ

d(p∗(x), pθ(x)) + λmLm(θ, φ) + λcLc(φ), (1)

where λm, λc are weighting factors and the last two terms are
Lm(θ, φ) = −E(x,y)∼pθ ln qφ(y | x) (2)

Lc(φ) = Ex∼p∗DKL(p∗(y | x)‖qφ(y | x)), (3)
where DKL is the Kullback-Leibler divergence. In this paper, we make the following contributions.

1. We show that the AC-GAN objective is a Lagrangian to a constrained optimization problem
that rejects the sampling of points near the classifier decision boundary.

2. We verify empirically that if the true joint distribution p∗(x, y) contains points near the
decision boundary, AC-GAN will learn a biased distribution that down-samples those points.

3. We relate our analysis to why AC-GAN yields more visually appealing images and better
Inception Score.

2 AC-GAN: A Lagrangian Perspective

In this section, we shall demonstrate that the AC-GAN objective can be interpreted as a Lagrangian
to a constrained optimization problem that imposes restrictions on the density of pθ(x). To simplify
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our analysis, we shall assume that the support of pθ (which we shall denote Xθ) is contained within
the support of p∗ (denoted as X ∗). Formally, we assume that for all θ ∈ Θ, Xθ ⊆ X ∗. Additionally,
we set pθ(y) to be a fixed prior distribution (i.e. uniform distribution). We now begin by considering
the following constrained optimization problem, which we denote as the primal objective,

min.
θ,φ

d(p∗(x), pθ(x))

s.t. Hθ(Y |X) ≤ ε
Ex∼pθDKL(pθ(y | x)‖qφ(y | x)) = 0

Ex∼p∗DKL(p∗(y | x)‖qφ(y | x)) = 0. (4)

Note that the second and third constraints serve as posterior regularization, effectively chaining
p∗(y | x), qφ(y | x), and pθ(y | x) together. Since Xθ ⊆ X ∗ and by the properties of the Kullback-
Leibler divergence (non-negativity and identity of indiscernibles), it follows that for all x ∈ Xθ,
pθ(y | x) = qφ(y | x) = p∗(y | x). Thus, the primal objective is equivalently expressed as,

min.
θ,φ

d(p∗(x), pθ(x))

s.t. Ex∼pθH(p∗(y | x)) ≤ ε
Ex∼pθDKL(pθ(y | x)‖qφ(y | x)) = 0

Ex∼p∗DKL(p∗(y | x)‖qφ(y | x)) = 0. (5)

Note that this objective minimizes the divergence between p∗(x) and pθ(x), subject to the constraint
that pθ(x), on expectation, cannot sample points for which p∗(y | x) has high uncertainty. In other
words, pθ is not allowed to sample near the decision boundary of p∗(y | x).

The Lagrangian for Eq. (4) suggests the following optimization problem

min.
θ,φ

d(p∗(x), pθ(x))− λmHθ(Y |X) + λpLp(θ, φ) + λcLc(φ), (6)

where Lp(θ, φ),Lc(φ) are the LHS terms of the second and third constraints in Eq. (4). When
λm = λp, Eq. (6) reduces to

min.
θ,φ

d(p∗(x), pθ(x)) + λmLm(θ, φ) + λcLc(φ), (7)

where Lm(θ, φ) = −Ex,y∼pθ ln qφ(y | x). Note that this objective in Eq. (7) is exactly the AC-GAN
objective in Eq. (1).

Our analysis exposes the AC-GAN objective as a Lagrangian to a constrained objective which rejects
samples near the decision boundary of the classification problem. We therefore predict that AC-GAN
is biased toward down-sampling points that are close to the decision boundary of the classifier, even
if the true density p∗(x) does contain points near the decision boundary.

3 Verifying AC-GAN’s Bias

We verify the down-sampling behavior of AC-GAN in a simple density estimation experiment
constructed using the MNIST dataset. Let y be one of two labels in {A,B}. We consider the
following generative model for p∗: sample y from {A,B} uniformly. If y = A, sample x uniformly
from MNIST 0’s and 1’s. If y = B, sample x uniformly from MNIST 0’s and 2’s. Assuming equal
numbers of 0’s, 1’s, and 2’s digits in the MNIST dataset, then the digit distribution in our constructed
p∗(x) should be [1/2, 1/4, 1/4] for 0’s, 1’s, and 2’s respectively. Furthermore, the Bayes-optimal
A/B classifier is maximally uncertain for 0’s, meaning that the 0’s digits lie exactly in the decision
boundary. Our analysis predicts that, as a result, 0’s will be down-sampled. We show in Fig. 1 and
Fig. 2 that AC-GAN indeed down-samples images of 0’s.

4 Inception Score and the Pretty Image Bias

Our analysis shows that AC-GAN down-samples difficult-to-classify images. From this perspective, it
is easy to see why blurry or globally incoherent images, which are probably more difficult to classify,
will be down-sampled. Furthermore, if humans consider easier-to-classify images to be prettier, then
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Figure 1: Visual comparison of how GAN, InfoGAN, and AC-GAN learns to use the discrete
latent variable y and demonstration of the down-sampling of zero’s in AC-GAN. In contrast, GAN
ignores the latent code and learns the correct distribution. InfoGAN, despite also containing a mutual
information maximizing term, simply re-assigns the latent code (A→ {0} , B → {1, 2}) so that the
mutual information objective does not conflict with the density estimation objective.
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Figure 2: Evaluation of the relative frequency of each digit (0’s, 1’s, 2’s) as we vary λm in the
range of [0, 2]. Note that, for p∗(x), the digit distribution should be [1/2, 1/4, 1/4]. Since 0’s are
down-sampled, the Inception Score improves too.

through AC-GAN’s biased sampling, it is, in theory, possible for the sampled images to be more
visually pleasing than the original distribution p∗(x). In Fig. 3, we show that phenomenon holds in
practice. We trained AC-GAN on the original MNIST dataset and digit labels. Since the inclusion of
serifs may cause confusion between 1’s and 2’s, AC-GAN biases sampling toward sans-serif 1’s.

(a) Real MNIST (b) AC-GAN λm = 2

Figure 3: Comparison of 1’s digits from the real MNIST dataset versus AC-GAN. Note that AC-GAN
does not sample 1’s with serifs, as this may cause confusion with 2’s. The Inception Score for real
MNIST is 9.80, while that for AC-GAN is 9.94—a higher score.

Our analysis also explains why AC-GAN performs well on the Inception Score [6]. If the Inception
Score is computed using the Bayes-optimal classifier, the log of the Inception Score corresponds
exactly to the mutual information objective I(X,Y ) under the joint distribution pθ(x)p∗(y | x).
If pθ(y | x) = p∗(y | x) and pθ(y) is set to be uniform, then AC-GAN is explicitly designed to
maximize the mutual information term underlying the Inception Score. In cases where the true
distribution p∗(x) contains point near the decision boundary of p∗(y | x), it is in fact possible for
AC-GAN to out-perform the real distribution on the Inception Score metric. We verify this in our toy
example in Fig. 2 and on the real MNIST dataset too in Fig. 3.

Conclusion. In this paper, we showed that the AC-GAN objective is a Lagrangian to a constrained
optimization problem that reveals AC-GAN’s bias against points near the decision boundary of the
auxiliary classifier. This bias is most apparent when the true distribution assigns density to points
near the decision boundary and causes AC-GAN to learn an incorrect distribution. We showed how
the incorrect distribution can in fact achieve a better Inception Score and recommend practitioners to
take this bias into account when deciding whether to use the AC-GAN objective.
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