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1 Introduction

Variational autoencoders [VAEs; 1, 2] are a popular and powerful class of deep generative models.
They resemble a classical autoencoder, except that the encoding function is replaced with a distribution
q(z | x) over latent codes, and this distribution is regularized to have small KL divergence to a (usually
pre-specified) marginal distribution p(z). If the reconstruction log-likelihood Eq[log p(x | z)] has
the same weight as the KL-divergence penalty Eq[log p(z)

q(z|x) ], then the training procedure can be
interpreted as maximizing a bound on the marginal likelihood p(x) (sometimes called the evidence
lower bound or ELBO):

log p(x) = log
∫
z
p(x, z)dz ≥ Eq[log p(x | z)]−KL(q(z | x) ‖ p(z)) , L. (1)

However, recent work has explored reweighting the KL-divergence term in L, either to alleviate
optimization issues during training [3] or to exert greater control over the sorts of latent spaces that get
learned [4, 5]. Following Higgins et al. [4], we call VAEs fit with a reweighted KL term “β-VAEs”.

In this paper, we analyze β-VAEs with the KL-divergence weight β < 1. We argue that optimizing
this partially regularized ELBO is equivalent to doing approximate variational EM with an implicit
prior r(z) that depends on the marginal posterior q(z) , 1

N

∑
n q(z | xn), with one main difference;

it ignores the normalizing constant of this implicit distribution. We show how to estimate this missing
normalizing constant.

2 Background

The β-VAE [4] rescales the KL-divergence term in the usual ELBO by a factor β:

Lβ , 1
N

∑
n Eq[log p(xn | z)]− βKL(q(z | xn) || p(z)). (2)

This objective can no longer be interpreted as a bound on the log marginal likelihood log p(x) =
log
∫
z
p(x, z)dz.

Hoffman et al. [6] show that the average KL-divergence term in (2) can be decomposed into a
mutual-information term and a different KL-divergence term:

1
N

∑
n KL(q(z | xn) || p(z)) = I(z;n) + KL(q(z) || p(z)); q(z) , 1

N

∑
n q(z | xn), (3)

where I(z;n) denotes the mutual information between z and an index n into the training set; that is,
I is how much information a sample from the mixture q(z) gives us about which q(z | xn) z was
sampled from. Hoffman et al. [6] argue that, in practice, the mutual-information term tends to saturate
at its maximum value (logN ), and its impact on the optimization is therefore negligible. They also
point out that one could set KL(q(z) || p(z)) = 0 by replacing p(z) = N (0, I) with p(z) = q(z),
although this would lead to computational issues and overfitting. We will argue below that β-VAE
training implicitly uses a q-dependent prior that interpolates between this extreme proposal and the
default option of using a simple pre-specified prior.
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3 Main Result

We argue that optimizing the β-VAE objective resembles variational EM with an alternate prior

r(z) , q(z)1−βp(z)β

C ; C ,
∫
z
q(z)1−βp(z)βdz, (4)

where q(z) is the marginal approximate posterior from equation (3). Plugging r(z) into the usual
ELBO, we get

1
N

∑
n log p(xn) ≥ 1

N

∑
n Eq[log p(xn | z)]− Eq

[
log r(z)

q(z|xn)

]
= 1

N

∑
n Eq[log p(xn | z)]− I(z;n) + Eq

[
log q(z)1−βp(z)β

q(z)

]
− logC

= 1
N

∑
n Eq[log p(xn | z)]− I(z;n) + Eq

[
log p(z)β

q(z)β

]
− logC

= 1
N

∑
n Eq[log p(xn | z)]− I(z;n)− βKL(q(z) || p(z))− logC

= Lβ − (1− β)I(z;n)− logC.

(5)

That is, the β-VAE is optimizing the standard ELBO with the implicit prior r(z), plus a term that
effectively down-weights the mutual-information, minus the log-normalizer logC for r(z).

4 The Log-Normalizer C

We now look in more detail at the log-normalizer C. Assume that p(z) = N (0, I), and

q(z | xn) = N (z;µ(xn),Σ(xn)) , N (z;µn,Σn), (6)

so that the marginal approximate posterior q(z) is a mixture of N Gaussians. For example, we might
have a VAE whose encoder outputs µn and Σn. Plugging this into the formula for C, we have

C =
∫
z
N (z; 0, I)β

(
1
N

∑
nN (z;µn,Σn)

)1−β
dz

=
∫
z
N (z; 0, I)β

(
1
N

∑
n
φ(n;z)
φ(n;z)N (z;µn,Σn)

)1−β
dz

≥ Nβ−1
∫
z
N (z; 0, I)β

∑
n φ(n; z)βN (z;µn,Σn)1−βdz,

(7)

where φ(n; z) is an arbitrary function satisfying
∑
n φ(n; z) = 1 and φ(n; z) > 0, and the inequality

follows from Jensen’s inequality and the concavity of the function x1−β for β < 1. Forming a
Lagrangian and taking derivatives with respect to φ(n; z) shows that the bound is tightest when
φ?(n; z) ∝ N (z;µn,Σn). That is, the optimal φ?(n; z) is the posterior over n for which q(z | xn)
might have generated z. Plugging this result back into (7) makes the bound perfectly tight, i.e.,

C ≡ Nβ−1
∫
z
N (z; 0, I)β

∑
n φ

?(n; z)βN (z;µn,Σn)1−βdz. (8)

Now, suppose that I(z;n) is saturated at logN . This implies that there is essentially no overlap
between N (µn,Σn) and N (µn′ ,Σn′) for any n 6= n′. This implies in turn that, for virtually all
values of z, φ?(n; z) has zero entropy. If this is true, then we can simplify (8):

C = Nβ−1
∫
z
N (z; 0, I)β

∑
n φ

?(n; z)βN (z;µn,Σn)1−βdz

≥ Nβ−1
∫
z
N (z; 0, I)βN (z;µn(z),Σn(z))

1−βdz,
(9)

where n(z) , arg maxn φ
?(n; z). The inequality follows because we are substituting an indicator

vector for the optimal φ?(n; z); if φ?(n; z) does in fact have approximately zero entropy, then the
bound will be nearly tight. Taking this a bit further, we have

C ≥ Nβ−1
∫
z
N (z; 0, I)βN (z;µn(z),Σn(z))

1−βdz

= Nβ−1
∑
n

∫
z|n(z)=n

N (z; 0, I)βN (z;µn,Σn)1−βdz

≤ Nβ−1
∑
n

∫
z
N (z; 0, I)βN (z;µn,Σn)1−βdz.

(10)

This new estimate will be relatively tight if every z with significant mass under the unnormalized
distribution N (z;µn,Σn)1−β satisfies n(z) = n. Smaller values of β will encourage this in two
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ways: the exponent on the unnormalized distribution will be larger, and the lower weight on the KL
term during training will encourage more concentrated posteriors.

Each of these N integrals is tractable. Suppressing the n subscript, we have

D(µ,Σ) ,
∫
z
N (z; 0, I)βN (z;µ,Σ)1−βdz = |Σ′|

1
2

|Σ|
1−β
2

exp
{
− 1−β

2 µ>Σ−1µ+ 1
2µ
′>Σ′−1µ′

}
,

Σ′ , (βI + (1− β)Σ−1)−1; µ′ , (1− β)Σ′Σ−1µ =
(

β
1−βΣ + I

)−1

µ. (11)

This yields an approximation to C as C ≈ Nβ−1
∑
nD(µn,Σn). This is tractable to compute, but

for intuition one can further simplify things if β and Σ are small, in which case

Σ′ ≈ 1
1−βΣ; µ′ ≈ µ; D(µ,Σ) ≈ |Σ|

β
2 ; C ≈ Nβ−1

∑
n |Σn|

β
2 . (12)

4.1 Implications

Now we will argue that replacing p(z) with r(z) and optimizing the resulting ELBO leads to a
degenerate solution. We will also argue that ignoring the log-normalizer term logC in this ELBO (as
β-VAE training effectively does), is approximately equivalent to regularizing this problematic ELBO
to prevent this degeneracy.

If the approximation in equation 12 holds, then the derivative of logC is approximately

∇Σn logC ≈ β
2
|Σn|

β
2∑

m |Σm|
β
2

Σ−1
n , wn

1
N
β
2 Σ−1

n = ∇Σnβ
1
N

∑
m−wmEq[log q(z | xm)], (13)

where wn , |Σn|
β
2

1
N

∑
m |Σm|

β
2

. That is, the derivative of logC with respect to Σn is equal to the

derivative of β times a weighted average of the entropies of the N variational distributions. If all of
the determinants are equal, then wn = 1 for all n, and the gradient of − logC exactly cancels out
the gradient of the entropy term in the KL divergence in equation 5. If they are not equal, then the
gradient will push the determinants towards equality.

The log-normalizer has thus effectively removed any incentive for the optimizer to use variational
distributions q(z | x) that have nonzero variance. Since Eq[log p(x, z)] is maximized by q(z |
x) = δ(z − arg maxz′ p(x, z

′)), the optimizer should set all variances to zero. In this case, the
approximation in equation 12 becomes exact, implying that there are degenerate stable maxima of
the implicit ELBO.

On the other hand, the analysis above implies that ignoring logC (i.e., doing simple β-VAE training)
is roughly equivalent to adding a − β

N

∑
n Eq[log q(z | x)] term to the implicit ELBO, regularizing

the model towards solutions with higher-variance approximate posteriors. Insofar as one believes
a priori that the marginal distribution on z should not be degenerate, this seems like a reasonable
constraint to enforce.

We can therefore interpret β-VAE training as approximately optimizing the implicit ELBO obtained
by replacing p(z) with r(z), and adding an entropy regularization term to avoid degenerate solutions.

5 Experiments

Figure 1 shows some samples from a β-VAE trained on statically binarized MNIST with β = 0.75,
where the z vectors used to generate the samples were sampled either from p(z) or the implicit prior
r(z). The samples from r(z) look much better than those from p(z). The bottom row demonstrates
that r(z) is not simply memorizing training examples.

Figure 2 shows the ELBO, KL divergence, and likelihood terms (evaluated using r(z), not p(z))
of β-VAEs trained with values of β ∈ [0.5, 1]. The log-normalizer was estimated with the simple
approximation in equation 9. The training ELBO is best for small β, but the generalization gap is very
large. This is because r(z) has overfit to the training data, and assigns low probability to z vectors
that could generate held-out data. As β gets larger and r(z) approaches p(z), the gap narrows.
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Figure 1: Samples and reconstructions from a β-VAE trained with β = 0.75. Top: Samples
generated by drawing from p(z) = N (0, I). Middle: Samples generated by drawing from r(z) ∝
q(z)0.25p(z)0.75. Bottom: Samples from an approximate posterior q(z|xn), where n is chosen to
maximize the likelihood of the corresponding z ∼ r(z) above.

Figure 2: ELBO, likelihood, and KL of various β-VAEs, evaluated with implicit prior r(z).

6 Conclusion

We have argued that training a β-VAE with β < 1 can be interpreted as optimizing an approximate
log marginal likelihood bound under an alternative prior r(z), regularized to prevent degeneracy.
Even though this r(z) is difficult to work with directly, we have derived some approximations to
examine it.

There are two reasons we might be interested in r(z). First, we may want to sample from it to do
unconditional generation. This may be computationally challenging. But in analysis or conditional
generation applications, we may be interested in r(z) mostly for the posterior p(z | x) ∝ r(z)p(x | z)
it induces. Our analysis suggests that, even if we never work with r(z) explicitly, the encoder
distribution q(z | x) of a β-VAE can still learn to approximate this posterior.

It would be interesting to consider other weights on the entropy regularizer than β, since there is
nothing in our analysis that suggests that it is a natural choice. We leave this investigation to future
work.

We suspect this interpretation of β-VAE models and inference networks may enable new inference
techniques and help us understand alternative training objectives.
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